Objectives: The aim of this study was to noninvasively image the electrophysiological (EP) substrate of human ventricles after myocardial infarction and define its characteristics.

Background: Ventricular infarct border zone is characterized by abnormal cellular electrophysiology and altered structural architecture and is a key contributor to arrhythmogenesis. The ability to noninvasively image its electrical characteristics could contribute to understanding of mechanisms and to risk-stratification for ventricular arrhythmia.

Methods: Electrocardiographic imaging, a noninvasive functional EP imaging modality, was performed during sinus rhythm (SR) in 24 subjects with infarct-related myocardial scar. The abnormal EP substrate on the epicardial aspect of the scar was identified, and its location, size, and morphology were compared with the anatomic scar imaged by other noninvasive modalities.

Results: Electrocardiographic imaging constructs epicardial electrograms that have characteristics of reduced amplitude (low voltage) and fractionation. Electrocardiographic imaging colocalizes the epicardial electrical scar to the anatomic scar with a high degree of accuracy (sensitivity 89%, specificity 85%). In nearly all subjects, SR activation patterns were affected by the presence of myocardial scar. Late potentials could be identified and were almost always within ventricular scar.

Conclusions: Electrocardiographic imaging accurately identifies areas of anatomic scar and complements standard anatomic imaging by providing scar-related EP characteristics of low voltages, altered SR activation, electrogram fragmentation, and presence of late potentials.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3365586PMC
http://dx.doi.org/10.1016/j.jacc.2011.07.029DOI Listing

Publication Analysis

Top Keywords

electrocardiographic imaging
20
anatomic scar
12
myocardial infarction
8
noninvasively image
8
myocardial scar
8
late potentials
8
imaging
7
scar
7
electrocardiographic
5
electrophysiological cardiac
4

Similar Publications

Background: Detection of atrial fibrillation (AF) in patients with embolic stroke of undetermined source (ESUS) is important for the secondary prevention of stroke. We investigated the factors associated with the detection of newly diagnosed AF in ESUS patients during follow-up.

Methods: Patients with acute ischemic stroke classified as ESUS were included.

View Article and Find Full Text PDF

Recurrent atrial fibrillation markers post radiofrequency catheter ablation.

Clin Chim Acta

January 2025

Department of Cardiology, the First Hospital of Jilin University, Changchun, Jilin Province 130021, China. Electronic address:

Atrial fibrillation (AF), the most common type of heart arrhythmia, is recognized as an independent risk factor for stroke. Fortunately, catheter ablation (CA) offers an effective treatment option for AF patients. However, numerous studies have reported suboptimal outcomes, as AF recurrence rates often remain elevated even after CA.

View Article and Find Full Text PDF

Objective: This study aimed to investigate the relationship between mortality and the frontal QRS-T angle (FQRS-TA), obtained by calculating the absolute difference between the QRS and T waves electrocardiographically (ECG), in patients diagnosed with ischemic stroke (IS).

Methods: This research is a retrospective and cross-sectional study. The diagnosis of IS was confirmed through brain imaging and physical examination.

View Article and Find Full Text PDF

A murine model of induced myocarditis and cardiac dysfunction.

Microbiol Spectr

January 2025

Department of Molecular and Comparative Pathobiology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA.

Unlabelled: is a protozoan parasite that causes human and animal African trypanosomiases (HAT and AAT). Cardiac symptoms are commonly reported in HAT patients, and intracardiac parasites with accompanying myocarditis have been observed in both natural hosts and animal models of infection. Despite the importance of as a cause of cardiac dysfunction and the dramatic socioeconomic impact of African trypanosomiases in sub-Saharan Africa, there are currently no reproducible murine models of associated cardiomyopathy.

View Article and Find Full Text PDF

Adenosine is extensively utilized in myocardial stress perfusion imaging for the detection and risk stratification of coronary artery disease. It has a well-established safety profile. The majority of the undesirable effects experienced during adenosine infusion are transient (owing to its brief half-life of ~10 s) and arise from the stimulation of receptors in the atrio-ventricular (AV) node (AV block) and bronchial smooth muscles (bronchospasm).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!