Neurons in the mammalian neocortex arise from asymmetric divisions of progenitors residing in the ventricular zone. While in most progenitor divisions, the mitotic spindle is parallel to the ventricular surface, some progenitors reorient the spindle and divide in oblique orientations. Here, we use conditional deletion and overexpression of mouse Inscuteable (mInsc) to analyze the relevance of spindle reorientation in cortical progenitors. Mutating mInsc almost abolishes oblique and vertical mitotic spindles, while mInsc overexpression has the opposite effect. Our data suggest that oblique divisions are essential for generating the correct numbers of neurons in all cortical layers. Using clonal analysis, we demonstrate that spindle orientation affects the rate of indirect neurogenesis, a process where progenitors give rise to basal progenitors, which in turn divide symmetrically into two differentiating neurons. Our results indicate that the orientation of progenitor cell divisions is important for correct lineage specification in the developing mammalian brain.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3199734PMC
http://dx.doi.org/10.1016/j.neuron.2011.09.022DOI Listing

Publication Analysis

Top Keywords

mouse inscuteable
8
spindle orientation
8
spindle
5
progenitors
5
inscuteable induces
4
induces apical-basal
4
apical-basal spindle
4
orientation facilitate
4
facilitate intermediate
4
intermediate progenitor
4

Similar Publications

Establishment of cellular polarity is one of the key events during oocyte maturation. Inscuteable (Insc) has been identified as a key regulator of cell polarity during asymmetric division in Drosophila. However, the function of its evolutionarily conserved mammalian homologue, mInscuteable (mInsc), in mouse meiotic maturation is not clear.

View Article and Find Full Text PDF

Asymmetric cell divisions balance stem cell proliferation and differentiation to sustain tissue morphogenesis and homeostasis. During asymmetric divisions, fate determinants and niche contacts segregate unequally between daughters, but little is known on how this is achieved mechanistically. In Drosophila neuroblasts and murine mammary stem cells, the association of the spindle orientation protein LGN with the stem cell adaptor Inscuteable has been connected to asymmetry.

View Article and Find Full Text PDF

During forebrain development, radial glia generate neurons through the production of intermediate progenitor cells (IPCs). The production of IPCs is a central tenet underlying the generation of the appropriate number of cortical neurons, but the transcriptional logic underpinning this process remains poorly defined. Here, we examined IPC production using mice lacking the transcription factor nuclear factor I/X (Nfix).

View Article and Find Full Text PDF

c-Rel Regulates Inscuteable Gene Expression during Mouse Embryonic Stem Cell Differentiation.

J Biol Chem

February 2016

From the Department of Cell Biology, Institute for Virus Research, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan, the Department of Mammalian Regulatory Networks, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan, and

Inscuteable (Insc) regulates cell fate decisions in several types of stem cells. Although it is recognized that the expression levels of mouse INSC govern the balance between symmetric and asymmetric stem cell division, regulation of mouse Insc gene expression remains poorly understood. Here, we showed that mouse Insc expression transiently increases at an early stage of differentiation, when mouse embryonic stem (mES) cells differentiate into bipotent mesendoderm capable of producing both endoderm and mesoderm in defined culture conditions.

View Article and Find Full Text PDF

Mammary Stem Cell Self-Renewal Is Regulated by Slit2/Robo1 Signaling through SNAI1 and mINSC.

Cell Rep

October 2015

Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA. Electronic address:

Tissue homeostasis requires somatic stem cell maintenance; however, mechanisms regulating this process during organogenesis are not well understood. Here, we identify asymmetrically renewing basal and luminal stem cells in the mammary end bud. We demonstrate that SLIT2/ROBO1 signaling regulates the choice between self-renewing asymmetric cell divisions (ACDs) and expansive symmetric cell divisions (SCDs) by governing Inscuteable (mInsc), a key member of the spindle orientation machinery, through the transcription factor Snail (SNAI1).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!