Cracking of porcelain surfaces arising from abrasive grinding with a dental air turbine.

J Prosthodont

Department of Oral Rehabilitation, School of Dentistry, University of Otago, Dunedin, New Zealand.

Published: December 2011

Purpose: The purpose of this in vitro study was to evaluate porcelain cracking induced by abrasive grinding with a conventional dental air turbine and abrasive diamond burs.

Materials And Methods: Four commercially available porcelains were examined-Wieland ALLUX, Wieland ZIROX, IPS e.max Ceram, and IPS Empress Esthetic Veneering porcelain. Sixty discs of each porcelain type were fabricated according to manufacturer instructions, followed by an auto-glaze cycle. Abrasive grinding using fine, extra-fine, and ultra-fine diamond burs was carried out, using a conventional dental air turbine. The grinding parameters were standardized with regard to the magnitude of the force applied, rotational speed of the diamond bur, and flow rate of the water coolant. A testing apparatus was used to control the magnitude of force applied during the grinding procedure. The ground surfaces were then examined under scanning electron microscope.

Results: Cracking was seen for all porcelain types when ground with the fine bur. Cracking was not seen for specimens ground with the extra-fine or the ultra-fine bur.

Conclusion: Wet abrasive grinding with a conventional dental air turbine and fine grit diamond burs has the potential to cause cracking in the four porcelain types tested. Similar abrasive grinding with smaller grit size particles does not cause similar observable cracking.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1532-849X.2011.00760.xDOI Listing

Publication Analysis

Top Keywords

abrasive grinding
20
dental air
16
air turbine
16
cracking porcelain
12
conventional dental
12
grinding conventional
8
extra-fine ultra-fine
8
diamond burs
8
magnitude force
8
force applied
8

Similar Publications

Difficult-to-cut titanium matrix composites (TMCs) are widely used in the aerospace, automotive, and defense sectors due to their excellent physical properties. Electrochemical mill grinding (ECMG) can achieve the processing effects of electrochemical milling and electrochemical grinding using the same tool, which has the potential to complete the rough and finish machining of TMCs in succession. However, in the rough machining stage, the bottom of the slot becomes concave due to the inevitable stray corrosion, leading to poor flatness, which increases the machining allowance for subsequent finish machining.

View Article and Find Full Text PDF

Diamond grinding wheels have been widely used to remove the residual features of cast parts, such as parting lines and pouring risers. However, diamond grains are prone to chemical wear as a result of their strong interaction with ferrous metals. To mitigate this wear, this study proposes the use of a novel water-based hexagonal boron nitride (hBN) as a minimum quantity lubrication (MQL) during the grinding of cast steel and conducted the grinding experiment and molecular dynamics simulation.

View Article and Find Full Text PDF

Investigation the CMP process of 6 H-SiC in HO solution with ReaxFF molecular dynamics simulation.

Sci Rep

January 2025

College of Mechanical Engineering, Zhejiang University of Technology, No.18, Chaowang Road, Hangzhou, 310014, Zhejiang Province, China.

To observe the chemical mechanical polishing (CMP) process at the atomic scale, reactive force field molecular dynamics (ReaxFF-MD) was employed to simulate the polishing of 6 H-SiC under three conditions: dry, pure water, and HO solution. This study examined the reactants on the surface of 6 H-SiC during the reaction in the HO solution, along with the dissociation and adsorption processes of HO and water molecules. The mechanisms for atom removal during the CMP process were elucidated.

View Article and Find Full Text PDF

Influence of Laser Micro-Texturing and Plasma Treatment on Adhesive Bonding Properties of WC-Co Carbides with Steel.

Materials (Basel)

December 2024

Department of Metal Forming, Welding and Metrology, Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, 50-370 Wrocław, Poland.

This article presents research on advanced surface preparation methods for sintered carbides (WC-Co, grade B2) commonly used in the tool industry, particularly in the context of bonding these materials with C45 steel using adhesives. Sintered carbides are widely used due to their high hardness, wear resistance, and good ductility, making them ideal for manufacturing tools operating in harsh conditions. Traditional bonding methods, such as brazing and welding, often result in stresses and cracks.

View Article and Find Full Text PDF

The abrasives of traditional grinding wheels are usually randomly arranged on the substrate, reducing the number of effective abrasive grains involved in the machining during the grinding process. However, there are some problems such as uneven distribution of chip storage space, high grinding temperature, and easy surface burn. In trying to address this issue, an ultrasonic vibration 3D printing method is introduced to fabricate the structured CBN (Cubic Boron Nitride) grinding wheel.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!