Background: Defects in the CYP21A2 gene cause steroid 21-hydroxylase deficiency, which is the most frequent cause of congenital adrenal hyperplasia. Forty four affected families were investigated to identify the mutation spectrum of the CYP21A2 gene.
Methods: Families were subjected to clinical, biochemical, and molecular analyses. Allele-specific polymerase chain reaction amplification was used for eight common mutations followed by dosage analysis to exclude CYP21A2 deletions.
Results: The most frequent mutations detected were gene deletions and chimera (31.8%). Other mutation frequencies were as follows: Q318X, 15.9%; I2G, 14.8%; I172N, 5.8%; gene duplication, 5.7%; R356W, 8%; and E6 cluster mutations, 2.3%. Direct sequencing of the CYP21A2 gene revealed R316X, P453S, c.484insT, and a change at the start codon. Different modules carried by patients were classified into five different haplotypes. The genotype phenotype correlation (positive predictive value) for group null, A, B, and C were 92.3%, 85.7%, 100%, and 0, respectively.
Conclusions: Methods used will be helpful for carrier detection and antenatal diagnosis, especially with inclusion of the multiplex ligation probe dependent amplification technique, which is easier for routine tests in comparison with other methods. Mutation frequencies indicate that Iranians are possible descendants of Asians and Europeans.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3277924 | PMC |
http://dx.doi.org/10.1089/gtmb.2011.0099 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!