Two new sterically challenged diimine ligands L(1) (2,9-dimesityl-2-(4'-bromophenyl)imidazo[4,5-f][1,10]phenanthroline) and L(2) (3,6-di-n-butyl-11-bromodipyrido[3,2-a:2',3'-c]phenazine) have been synthesized with the aim to build original heteroleptic copper(I) complexes, following the HETPHEN concept developed by Schmittel and co-workers. The structure of L(1) is based on a phen-imidazole molecular core, derivatized by two highly bulky mesityl groups in positions 2 and 9 of the phenanthroline cavity, preventing the formation of a homoleptic species, while L(2) is a dppz derivative, bearing n-butyl chains in α positions of the chelating nitrogen atoms. The unambiguous formation of six novel heteroleptic copper(I) complexes based on L(1), L(2), and complementary matching ligands (2,9-R(2)-1,10-phenanthroline, with R = H, methyl, n-butyl or mesityl) has been evidenced, and the resulting compounds were fully characterized. The electronic absorption spectra of all complexes fits well with DFT calculations allowing the assignment of the main transitions. The characteristics of the emissive excited state were investigated in different solvents using time-resolved single photon counting and transient absorption spectroscopy. The complexes with ligand L(2), bearing a characteristic dppz moiety, exhibit a very low energy excited-state which mainly leads to fast nonradiative relaxation, whereas the emission lifetime is higher for those containing the bulky ligand L(1). For example, a luminescence quantum yield of about 3 × 10(-4) is obtained with a decay time of about 50 ns for C2 ([Cu(I)(nBu-phen)(L(1))](+)) with a weak influence of strong coordinating solvent on the luminescence properties. Overall, the spectral features are those expected for a highly constrained coordination cage. Yet, the complexes are stable in solution, partly due to the beneficial π stacking between mesityl groups and vicinal phenanthroline aromatic rings, as evidenced by the X-ray structure of complex C3 ([Cu(I)(Mes-phen)(L(2))](+)). Electrochemistry of the copper(I) complexes revealed reversible anodic behavior, corresponding to a copper(I) to copper(II) transition. The half wave potentials increase with the steric bulk at the level of the copper(I) ion, reaching a value as high as 1 V vs SCE, with the assistance of ligand induced electronic effects. L(1) and L(2) are further end-capped by a bromo functionality. A Suzuki cross-coupling reaction was directly performed on the complexes, in spite of the handicapping lability of copper(I)-phenanthroline complexes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ic2006343 | DOI Listing |
Dalton Trans
January 2025
CLIC, Institut de Chimie de Strasbourg, UMR 7177 CNRS-Unistra, 4 rue Blaise Pascal, 67000 Strasbourg, France.
Iron-copper complexes have been extensively studied in the search for efficient cytochrome oxidase models. Whereas most dinuclear materials usually focus on fine-tuning the coordination of heme-Fe, this work shows that the coordination of copper in cytochrome oxidase models should be carefully taken into consideration. A β-cyclodextrin dimer was built around a bipyridine linker and combined with Fe-tetraphenylsulfonatoporphyrinate (FeTPPS) to generate a self-assembled hydrosoluble cytochrome oxidase model.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Shandong University, Department of Chemistry, 27 South Shanda Road, 250100, Jinan, CHINA.
Planar chirality found tremendous use in many fields, such as chemistry, optics, and materials science. In particular, planar chiral [2.2]paracyclophanes (PCPs) are a type of structurally interesting and practically useful chiral compounds bearing unique electronic and photophysical properties and thus have been widely used in π-stacking polymers, organic luminescent materials, and as a valuable toolbox for developing chiral ligands or organocatalysts.
View Article and Find Full Text PDFInorg Chem
January 2025
Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, 3012 Bern, Switzerland.
Binuclear silver(I) and copper(I) complexes, and , with bridging diphenylphosphine ligands were prepared. In , the silver(I) center is located inside a trigonal plane composed of three phosphorus donors from three separate and bridging dppm ligands. The fourth coordination site is filled with neighboring silver(I) ions.
View Article and Find Full Text PDFInorg Chem
January 2025
Department of Chemistry, University of Richmond, Richmond, Virginia 23173, United States.
Copper(I) complexes of isobutyl- () and isopropyl-substituted () proazaphosphatranes have been synthesized. Structural and computational studies of a series of monomeric complexes CuX (X = Cl, Br, I) and dimeric [CuCl] provide insight into the transannulation within and steric properties of the proazaphosphatrane ligand. These halide complexes are competent precatalysts in a model borylation reaction, and the silylamido complex CuN(TMS) catalyzes hydrosilylation of benzaldehyde under mild conditions.
View Article and Find Full Text PDFChem Catal
November 2024
Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States.
The use of visible light to drive chemical transformations has a history spanning over a century. However, the development of photo-redox catalysts to efficiently harness light energy is a more recent advancement, evolving over the past two decades. While ruthenium and iridium-based photocatalysts dominate due to their photostability, long excited-state lifetimes, and high redox potentials, concerns about sustainability and cost have shifted attention to first-row transition metals.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!