Sharpening our image.

Imprint

Published: December 2011

Download full-text PDF

Source

Publication Analysis

Top Keywords

sharpening image
4
sharpening
1

Similar Publications

2D MoS-based reconfigurable analog hardware.

Nat Commun

January 2025

School of Integrated Circuits and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.

Biological neural circuits demonstrate exceptional adaptability to diverse tasks by dynamically adjusting neural connections to efficiently process information. However, current two-dimension materials-based neuromorphic hardware mainly focuses on specific devices to individually mimic artificial synapse or heterosynapse or soma and encoding the inner neural states to realize corresponding mock object function. Recent advancements suggest that integrating multiple two-dimension material devices to realize brain-like functions including the inter-mutual connecting assembly engineering has become a new research trend.

View Article and Find Full Text PDF

A critical goal of vision is to detect changes in light intensity, even when these changes are blurred by the spatial resolution of the eye and the motion of the animal. Here, we describe a recurrent neural circuit in Drosophila that compensates for blur and thereby selectively enhances the perceived contrast of moving edges. Using in vivo, two-photon voltage imaging, we measured the temporal response properties of L1 and L2, two cell types that receive direct synaptic input from photoreceptors.

View Article and Find Full Text PDF

Visual stimuli compete with each other for cortical processing and attention biases this competition in favor of the attended stimulus. How does the relationship between the stimuli affect the strength of this attentional bias? Here, we used functional MRI to explore the effect of target-distractor similarity in neural representation on attentional modulation in the human visual cortex using univariate and multivariate pattern analyses. Using stimuli from four object categories (human bodies, cats, cars, and houses), we investigated attentional effects in the primary visual area V1, the object-selective regions LO and pFs, the body-selective region EBA, and the scene-selective region PPA.

View Article and Find Full Text PDF

To improve the rendering effect of artistic images, a method enhancing features of artistic images is proposed based on histogram equalization and bilateral filtering in the article. Firstly, artistic images are divided into both high and low-frequency representations, and the multi-step enhancement processing level is delimited by multi-band decomposition. Secondly, the noise in the image is removed by bilateral filtering.

View Article and Find Full Text PDF

Purpose: The deep learning time-of-flight (DL-ToF) aims to replicate the ToF effects through post-processing, applying deep learning-based enhancement to PET images. This study evaluates the effectiveness of DL-ToF using a chest-abdomen phantom that simulates human anatomical structures.

Methods: The 3 DL-ToF intensities (Low-DL-ToF: LDL, Middle-DL-ToF: MDL, High-DL-ToF: HDL) were adopted for the PET image of the chest-abdomen phantom.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!