A complex of ExbB, ExbD, and TonB couples cytoplasmic membrane (CM) proton motive force (pmf) to the active transport of large, scarce, or important nutrients across the outer membrane (OM). TonB interacts with OM transporters to enable ligand transport. Several mechanical models and a shuttle model explain how TonB might work. In the mechanical models, TonB remains attached to the CM during energy transduction, while in the shuttle model the TonB N terminus leaves the CM to deliver conformationally stored potential energy to OM transporters. Previous studies suggested that TonB did not shuttle based on the activity of a GFP-TonB fusion that was anchored in the CM by the GFP moiety. When we recreated the GFP-TonB fusion to extend those studies, in our hands it was proteolytically unstable, giving rise to potentially shuttleable degradation products. Recently, we discovered that a fusion of the Vibrio cholerae ToxR cytoplasmic domain to the N terminus of TonB was proteolytically stable. ToxR-TonB was able to be completely converted into a proteinase K-resistant conformation in response to loss of pmf in spheroplasts and exhibited an ability to form a pmf-dependent formaldehyde crosslink to ExbD, both indicators of its location in the CM. Most importantly, ToxR-TonB had the same relative specific activity as wild-type TonB. Taken together, these results provide conclusive evidence that TonB does not shuttle during energy transduction. We had previously concluded that TonB shuttles based on the use of an Oregon Green(®) 488 maleimide probe to assess periplasmic accessibility of N-terminal TonB. Here we show that the probe was permeant to the CM, thus permitting the labeling of the TonB N-terminus. These former results are reinterpreted in the context that TonB does not shuttle, and suggest the existence of a signal transduction pathway from OM to cytoplasm.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3191458 | PMC |
http://dx.doi.org/10.3389/fmicb.2011.00206 | DOI Listing |
Microbiol Spectr
January 2025
Department of Microbiology & Molecular Genetics, The University of Texas Health Science Center, Houston, Texas, USA.
, prevalent in the oral cavity, is significantly linked to overall human health. Our molecular comprehension of its role in oral biofilm formation and its interactions with the host under various pathological circumstances has seen considerable advancements in recent years, primarily due to the development of various genetic tools for DNA manipulation in this bacterium. Of these, counterselection-based unmarked in-frame mutation methods have proved notably effective.
View Article and Find Full Text PDFUnlabelled: , prevalent in the oral cavity, is significantly linked to overall human health. Our molecular comprehension of its role in oral biofilm formation and its interactions with the host under various pathological circumstances has seen considerable advancements in recent years, primarily due to the development of various genetic tools for DNA manipulation in this bacterium. Of these, counterselection-based unmarked in-frame mutation methods have proved notably effective.
View Article and Find Full Text PDFInfect Immun
June 2024
Department of Microbiology and Immunology, Indiana University School of Medicine, Indiana University, Indianapolis, Indiana, USA.
Front Cell Infect Microbiol
April 2024
Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
Introduction: The hemin acquisition system is composed of an outer membrane TonB-dependent transporter that internalizes hemin into the periplasm, periplasmic hemin-binding proteins to shuttle hemin, an inner membrane transporter that transports hemin into the cytoplasm, and cytoplasmic heme oxygenase to release iron. Fur and HemP are two known regulators involved in the regulation of hemin acquisition. The hemin acquisition system of is poorly understood, with the exception of HemA as a TonB-dependent transporter for hemin uptake.
View Article and Find Full Text PDFFront Microbiol
June 2022
Institute of Plant Science and Resources, Okayama University, Okayama, Japan.
and species oxidize methanol pyrroloquinoline quinone-methanol dehydrogenases (MDHs). MDHs can be classified into two major groups, Ca-dependent MDH (MxaF) and lanthanide (Ln)-dependent MDH (XoxF), whose expression is regulated by the availability of Ln. A set of a siderophore, TonB-dependent receptor, and an ABC transporter that resembles the machinery for iron uptake is involved in the solubilization and transport of Ln.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!