Investigation on quantitative structure activity relationships and pharmacophore modeling of a series of mGluR2 antagonists.

Int J Mol Sci

Department of Materials Science and Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China; E-Mails: (M.-Q.Z.); (W.-J.F.); (M.H.); (S.-W.Z.).

Published: February 2015

MGluR2 is G protein-coupled receptor that is targeted for diseases like anxiety, depression, Parkinson's disease and schizophrenia. Herein, we report the three-dimensional quantitative structure-activity relationship (3D-QSAR) studies of a series of 1,3-dihydrobenzo[ b][1,4]diazepin-2-one derivatives as mGluR2 antagonists. Two series of models using two different activities of the antagonists against rat mGluR2, which has been shown to be very similar to the human mGluR2, (activity I: inhibition of [(3)H]-LY354740; activity II: mGluR2 (1S,3R)-ACPD inhibition of forskolin stimulated cAMP.) were derived from datasets composed of 137 and 69 molecules respectively. For activity I study, the best predictive model obtained from CoMFA analysis yielded a Q(2) of 0.513, R(2) (ncv) of 0.868, R(2) (pred) = 0.876, while the CoMSIA model yielded a Q(2) of 0.450, R(2) (ncv) = 0.899, R(2) (pred) = 0.735. For activity II study, CoMFA model yielded statistics of Q(2) = 0.5, R(2) (ncv) = 0.715, R(2) (pred) = 0.723. These results prove the high predictability of the models. Furthermore, a combined analysis between the CoMFA, CoMSIA contour maps shows that: (1) Bulky substituents in R(7), R(3) and position A benefit activity I of the antagonists, but decrease it when projected in R(8) and position B; (2) Hydrophilic groups at position A and B increase both antagonistic activity I and II; (3) Electrostatic field plays an essential rule in the variance of activity II. In search for more potent mGluR2 antagonists, two pharmacophore models were developed separately for the two activities. The first model reveals six pharmacophoric features, namely an aromatic center, two hydrophobic centers, an H-donor atom, an H-acceptor atom and an H-donor site. The second model shares all features of the first one and has an additional acceptor site, a positive N and an aromatic center. These models can be used as guidance for the development of new mGluR2 antagonists of high activity and selectivity. This work is the first report on 3D-QSAR modeling of these mGluR2 antagonists. All the conclusions may lead to a better understanding of the mechanism of antagonism and be helpful in the design of new potent mGluR2 antagonists.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3189765PMC
http://dx.doi.org/10.3390/ijms12095999DOI Listing

Publication Analysis

Top Keywords

mglur2 antagonists
24
mglur2
10
activity
9
antagonists
8
activity study
8
model yielded
8
potent mglur2
8
aromatic center
8
model
5
investigation quantitative
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!