The skin-whitening agent, deoxyArbutin, is a potent tyrosinase inhibitor that is safer than hydroquinone and arbutin. However, it is thermolabile in aqueous solutions, where it decomposes to hydroquinone. Pharmaceutical and cosmetic emulsions are normally oil-in-water (o/w) or water-in-oil (w/o) systems; however, emulsions can be formulated with no aqueous phase to produce an anhydrous emulsion system. An anhydrous emulsion system could offer a stable vehicle for compounds that are sensitive to hydrolysis or oxidation. Therefore, to enhance the stability of deoxyArbutin in formulations, we chose the polyol-in-silicone, anhydrous emulsion system as the basic formulation for investigation. The quantity of deoxyArbutin and the accumulation of hydroquinone in both hydrous and anhydrous emulsions at various temperatures were analyzed through an established high performance liquid chromatographic (HPLC) method. The results indicated that water increased the decomposition of deoxyArbutin in the formulations and that the polyol-in-silicone, oil-based, anhydrous emulsion system provided a relatively stable surrounding for the deoxyArbutin that delayed its degradation at 25 °C and 45 °C. Moreover, the composition of the inner hydrophilic phase, containing different amounts of glycerin and propylene glycol, affected the stability of deoxyArbutin. Thus, these results will be beneficial when using deoxyArbutin in cosmetics and medicines in the future.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3189761 | PMC |
http://dx.doi.org/10.3390/ijms12095946 | DOI Listing |
Curr Res Food Sci
November 2024
Synchrotron Soleil, L'Orme des Merisiers, Saint-Aubin BP48, F-91192, Gif-sur-Yvette, France.
In the current context of food transition, the growing demand of consumers for sustainable plant-based protein sources has stimulated interest of food scientists in plant protein ingredients as alternatives to dairy protein ingredients. In this study, we hypothesized that the crystallization properties of dairy emulsions could be affected by the chemical complexity of commercially available pea protein-rich ingredients that contain proteins but also endogenous lipids. Dairy emulsions (30 %wt milk fat) stabilized either by a pea protein isolate or dairy proteins were prepared, their microstructure and interfacial composition were characterized.
View Article and Find Full Text PDFSci Rep
November 2024
Department of Industrial Chemistry, College of Science, Evangel University Akaeze, Ebonyi, Nigeria.
This study aimed to investigate the in vitro performance of self-nanoemulsifying drug delivery systems (SNEDDSs) of Ornidazole (ORD), a poorly water-soluble drug. Self-nanoemulsifying drug delivery systems of ORD were prepared using various oils, non-ionic surfactants, and/or water-soluble co-solvents and assessed visually/by droplet size measurement. Equilibrium solubility of ORD in the anhydrous and diluted SNEDDS was conducted to achieve the maximum drug loading.
View Article and Find Full Text PDFFood Chem
February 2025
Department of Chemical Engineering, University of Bath, Bath BA2 7AY, United Kingdom.
The growing popularity of three-dimensional (3D) food printing has highlighted the need for suitable printable materials. This study explores the impact of xanthan gum on octenyl succinic anhydride (OSA) starch-stabilized High Internal Phase Emulsions (HIPEs) for 3D food printing applications. Xanthan gum was added to increase the viscosity of the continuous phase, which helps to slow down the movement and reduce the collision of emulsion droplets.
View Article and Find Full Text PDFFood Chem
December 2024
JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong 510632, China.. Electronic address:
Currently, the poor whipping capabilities of anhydrous milk fat (AMF) in aerated emulsion products are a major obstacle for their use in beverages like tea and coffee, as well as in cakes and desserts, presenting fresh hurdles for the food industry. In this study, the mechanism of action of diacylglycerols (DAGs) with different carbon chain lengths and degrees of saturation on the partial coalescence of aerated emulsions was systematically investigated from three fundamental perspectives: fat crystallization, air-liquid interface rheology, and fat globule interface properties. The optimized crystallization of long carbon chain length diacylglycerol (LCD) based on stearate enhances interactions between fat globules at the air-liquid interface (with an elastic modulus E' reaching 246.
View Article and Find Full Text PDFSmall
November 2024
State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, P. R. China.
Rapid economic development has led to oil pollution and energy shortage. Membrane separation has attracted much attention due to its simplicity and efficiency in oil-water-separation. The development of membrane materials with enhanced separation properties is essential to improve the separation-efficiency.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!