Introduction: The use of simulators in medical training has been on the rise over the past decade as a means to teach procedural skills to trainees in a risk free environment. The goal of this study was to pilot a simulator based skills course for inexperienced neurosurgical residents to teach the fundamentals of cervicocerebral catheterization and angiography, with the ultimate goal of defining a universal simulator based curriculum that could be incorporated into neurosurgical resident training in the future.

Methods: Seven neurosurgery residents with no prior angiographic experience served as the pilot participants for this 2 day course. Four neurointerventional trained neurosurgeons served as faculty for instruction and evaluation. The majority of the course focused on hands-on simulator practice with close mentoring by faculty. Participants were evaluated with pre-course and post-course assessments.

Results: Post-course written test scores were significantly higher than pre-course scores (p<0.001). Faculty assessments of participants' technical skills with angiography (graded 0-10, with 10 being best) also improved significantly from pre-course to post-course (pre 2.1; post 5.9; p<0.001). Objective simulator recorded assessments demonstrated a significant decrease in the time needed to complete a four vessel angiogram (p<0.001) and total fluoroscopic time (p<0.001).

Conclusions: Participant angiography skills, based on both faculty and simulator assessments, as well as participant knowledge, improved after this didactic, hands-on simulator course. Neuroendovascular simulator training appears to be a viable means of training inexperienced neurosurgery residents in the early learning stages of basic endovascular neurosurgery. Further studies evaluating the translation of procedural skills learned on the simulator to actual clinical skills in the angiography suite is necessary.

Download full-text PDF

Source
http://dx.doi.org/10.1136/neurintsurg-2011-010128DOI Listing

Publication Analysis

Top Keywords

simulator based
12
simulator
4
based angiography
4
angiography education
4
education neurosurgery
4
neurosurgery pilot
4
pilot educational
4
educational program
4
program introduction
4
introduction simulators
4

Similar Publications

Small Molecular Oligopeptides Adorned with Tryptophan Residues as Potent Antitumor Agents: Design, Synthesis, Bioactivity Assay, Computational Prediction, and Experimental Validation.

J Chem Inf Model

January 2025

Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China.

Tryptophan participates in important life activities and is involved in various metabolic processes. The indole and aromatic binuclear ring structure in tryptophan can engage in diverse interactions, including π-π, π-alkyl, hydrogen bonding, cation-π, and CH-π interactions with other side chains and protein targets. These interactions offer extensive opportunities for drug development.

View Article and Find Full Text PDF

Background: Breast cancer is a frequently diagnosed malignant disease and the primary cause of mortality among women with cancer worldwide. The therapy options are influenced by the molecular subtype due to the intricate nature of the condition, which consists of various subtypes. By focusing on the activation of receptors, Epidermal Growth Factor Receptor (EGFR) tyrosine kinase can be utilized as an effective drug target for therapeutic purposes of breast cancer.

View Article and Find Full Text PDF

Introduction: The effectiveness of pharmaceutical treatment methods is vital in cancer treatment. In this context, various targeted drug delivery systems are being developed to minimize or eliminate existing deficiencies and harms. This study aimed to model the interaction of MEN-based drug-targeting systems with cancer cells and determine the properties of interacting MENs.

View Article and Find Full Text PDF

In this study, we analyze the characteristics of fast transient drain current () in IGZO-based field-effect transistors (FETs) with different composition ratios (device O: ratio of 1:1:1 for In, Ga, Zn, device G: ratio of 0.307:0.39:0.

View Article and Find Full Text PDF

Reliable in silico prediction of fragment binding modes remains a challenge in current drug design research. Due to their small size and generally low binding affinity, fragments can potentially interact with their target proteins in different ways. In the current study, we propose a workflow aimed at predicting favorable fragment binding sites and binding poses through multiple short molecular dynamics simulations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!