Reply to "on cochlear impedances and the miscomputation of power gain" by Shera et Al. J. Assoc. Re. Otolaryngol.

J Assoc Res Otolaryngol

Oregon Hearing Research Center, Department of Otolaryngology and Head and Neck Surgery, Oregon Health & Science University, Portland, OR 97239, USA.

Published: December 2011

Using a scanning laser interferometer, we recently measured the volume velocity of the basilar membrane vibration in the sensitive gerbil cochlea and estimated that the cochlear power gain is ~100 at low sound pressure levels (Ren et al., Nat Commun 2:216-223, 2011a). We thank Shera et al. for recognizing the technical challenges of our experiments and appreciating the beauty of our data in their comment (Shera et al., J Assoc Res Otolaryngol (in press), 2011). These authors argue that our analysis is inappropriate, invalidating our conclusion; moreover, they suggest that our finding of a power gain of >1 could arise from a passive structure or cochlea. While our analysis and interpretation remain to be verified, they are justified according to commonly accepted assumptions and theories in cochlear mechanics. Here, we also show that the mathematical demonstration of a power gain of >1 in a passive cochlea by Shera et al. is inconsistent with our data, which show that the volume velocity and power gain decrease and become <1 as the sound level increases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3214244PMC
http://dx.doi.org/10.1007/s10162-011-0295-yDOI Listing

Publication Analysis

Top Keywords

power gain
16
shera assoc
8
volume velocity
8
gain passive
8
power
5
reply "on
4
"on cochlear
4
cochlear impedances
4
impedances miscomputation
4
miscomputation power
4

Similar Publications

Evaluation of charge summing correction in CdTe-based photon-counting detectors for breast CT: performance metrics and image quality.

J Med Imaging (Bellingham)

January 2025

U.S. Food and Drug Administration, Office of Science and Engineering Labs, Division of Imaging, Diagnostics, and Software Reliability, Silver Spring, Maryland, United States.

Purpose: We evaluate the impact of charge summing correction on a cadmium telluride (CdTe)-based photon-counting detector in breast computed tomography (CT).

Approach: We employ a custom-built laboratory benchtop system using the X-THOR FX30 0.75-mm CdTe detector (Varex Imaging, Salt Lake City, Utah, United States) with a pixel pitch of 0.

View Article and Find Full Text PDF

Regulation of gene expression helps determine various phenotypes in most cellular life forms. It is orchestrated at different levels and at the point of transcription initiation by transcription factors (TFs). TFs bind to DNA through domains that are evolutionarily related, by shared membership of the same superfamilies (TF-SFs), to those found in other nucleic acid binding and protein-binding functions (nTFs for non-TFs).

View Article and Find Full Text PDF

This paper presents a novel rail-to-rail Class-AB operational amplifier tailored for wake-up systems in motion sensor applications. By addressing limitations in free Class-AB designs, such as large inrush current, unstable bias conditions, and area ineffiiency, the proposed design achieves a gain of 59 dB and unity gain frequency of 550 kHz driving a 5 pF load. The inrush current is reduced from 1 mA to 7 µA, increasing the battery life.

View Article and Find Full Text PDF

Narrow Linewidth All-Optical Microwave Oscillator Based on Torsional Radial Acoustic Modes of Single-Mode Fiber.

Micromachines (Basel)

January 2025

Key Laboratory of Instrumentation Science and Dynamic Measurement Ministry of Education, North University of China, Taiyuan 030051, China.

A Hz level narrow linewidth all-optical microwave oscillator based on the torsional radial acoustic modes (TR) of a single-mode fiber (SMF) is proposed and validated. The all-optical microwave oscillator consists of a 20 km SMF main ring cavity and a 5 km SMF sub ring cavity. The main ring cavity provides forward stimulated Brillouin scattering gain and utilizes a nonlinear polarization rotation effect to achieve TR mode locking.

View Article and Find Full Text PDF

This paper presents an X-band high-power GaN MMIC power amplifier (PA). To balance efficiency, output power, and saturated power flatness, the load-line theory is employed to analyze and validate the power variation trends within an extended continuous Class B/J (CCBJ) impedance space. Theoretical constant power contours are plotted within this space.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!