Using a scanning laser interferometer, we recently measured the volume velocity of the basilar membrane vibration in the sensitive gerbil cochlea and estimated that the cochlear power gain is ~100 at low sound pressure levels (Ren et al., Nat Commun 2:216-223, 2011a). We thank Shera et al. for recognizing the technical challenges of our experiments and appreciating the beauty of our data in their comment (Shera et al., J Assoc Res Otolaryngol (in press), 2011). These authors argue that our analysis is inappropriate, invalidating our conclusion; moreover, they suggest that our finding of a power gain of >1 could arise from a passive structure or cochlea. While our analysis and interpretation remain to be verified, they are justified according to commonly accepted assumptions and theories in cochlear mechanics. Here, we also show that the mathematical demonstration of a power gain of >1 in a passive cochlea by Shera et al. is inconsistent with our data, which show that the volume velocity and power gain decrease and become <1 as the sound level increases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3214244 | PMC |
http://dx.doi.org/10.1007/s10162-011-0295-y | DOI Listing |
J Med Imaging (Bellingham)
January 2025
U.S. Food and Drug Administration, Office of Science and Engineering Labs, Division of Imaging, Diagnostics, and Software Reliability, Silver Spring, Maryland, United States.
Purpose: We evaluate the impact of charge summing correction on a cadmium telluride (CdTe)-based photon-counting detector in breast computed tomography (CT).
Approach: We employ a custom-built laboratory benchtop system using the X-THOR FX30 0.75-mm CdTe detector (Varex Imaging, Salt Lake City, Utah, United States) with a pixel pitch of 0.
Regulation of gene expression helps determine various phenotypes in most cellular life forms. It is orchestrated at different levels and at the point of transcription initiation by transcription factors (TFs). TFs bind to DNA through domains that are evolutionarily related, by shared membership of the same superfamilies (TF-SFs), to those found in other nucleic acid binding and protein-binding functions (nTFs for non-TFs).
View Article and Find Full Text PDFSensors (Basel)
January 2025
Electrical Engineering Department, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia.
This paper presents a novel rail-to-rail Class-AB operational amplifier tailored for wake-up systems in motion sensor applications. By addressing limitations in free Class-AB designs, such as large inrush current, unstable bias conditions, and area ineffiiency, the proposed design achieves a gain of 59 dB and unity gain frequency of 550 kHz driving a 5 pF load. The inrush current is reduced from 1 mA to 7 µA, increasing the battery life.
View Article and Find Full Text PDFMicromachines (Basel)
January 2025
Key Laboratory of Instrumentation Science and Dynamic Measurement Ministry of Education, North University of China, Taiyuan 030051, China.
A Hz level narrow linewidth all-optical microwave oscillator based on the torsional radial acoustic modes (TR) of a single-mode fiber (SMF) is proposed and validated. The all-optical microwave oscillator consists of a 20 km SMF main ring cavity and a 5 km SMF sub ring cavity. The main ring cavity provides forward stimulated Brillouin scattering gain and utilizes a nonlinear polarization rotation effect to achieve TR mode locking.
View Article and Find Full Text PDFMicromachines (Basel)
January 2025
School of Electronics and Information, Hangzhou Dianzi University, Hangzhou 310018, China.
This paper presents an X-band high-power GaN MMIC power amplifier (PA). To balance efficiency, output power, and saturated power flatness, the load-line theory is employed to analyze and validate the power variation trends within an extended continuous Class B/J (CCBJ) impedance space. Theoretical constant power contours are plotted within this space.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!