A multidimensional biofilm model is developed to simulate biofilm growth on the anode of a Microbial Fuel Cell (MFC). The biofilm is treated as a conductive material, and electrons produced during microbial growth are assumed to be transferred to the anode through a conductive biofilm matrix. Growth of Geobacter sulfurreducens is simulated using the Nernst-Monod kinetic model that was previously developed and later validated in experiments. By implementing a conduction-based biofilm model in two dimensions, we are able to explore the impact of anode density and arrangement on current production in a MFC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11538-011-9690-0 | DOI Listing |
Front Microbiol
January 2025
School of Engineering, Newcastle University, Newcastle upon Tyne, United Kingdom.
Microbial Fuel Cells (MFCs) are innovative environmental engineering systems that harness the metabolic activities of microbial communities to convert chemical energy in waste into electrical energy. However, MFC performance optimization remains challenging due to limited understanding of microbial metabolic mechanisms, particularly with complex substrates under realistic environmental conditions. This study investigated the effects of substrate complexity (acetate vs.
View Article and Find Full Text PDFRSC Adv
January 2025
CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences Chengdu 610041 China.
A novel multilayer nanoflake structure of manganese oxide/graphene oxide (γ-MnO/GO) was fabricated a simple template-free chemical precipitation method, and the modified carbon felt (CF) electrode with γ-MnO/GO composite was used as an anode material for microbial fuel cells (MFCs). The characterization results revealed that the γ-MnO/GO composite has a novel multilayer nanoflake structure and offers a large specific surface area for bacterial adhesion. The electrochemical analyses demonstrated that the γ-MnO/GO composite exhibited excellent electrocatalytic activity and enhanced the electrochemical reaction rate and reduced the electron transfer resistance, consequently facilitating extracellular electron transfer (EET) between the anode and bacteria.
View Article and Find Full Text PDFMethodsX
June 2025
Biofuel and Renewable Energy Research Center, Department of Chemical Engineering, Babol Noshirvani University of Technology, Babol, Iran.
Microbial fuel cells (MFCs) have garnered significant attention from researchers as an innovative and environmentally friendly method for the treatment of urban and industrial wastewater. The type and material of the electrode are critical factors affecting the efficiency and energy production of this process. The electrodeposition method was employed to dope nickel (Ni) and modify the surface of graphite plates (GP) and carbon felt (CF).
View Article and Find Full Text PDFBiosens Bioelectron
January 2025
Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China. Electronic address:
Sulfate-reducing bacteria (SRB) are recognized as significant contributors to microbiologically induced corrosion (MIC). Developing effective, economical, sensitive, and specific detection methods for SRB is crucial for understanding microbial corrosion mechanisms and for early monitoring. In this study, a novel dual-mode DNA biosensor was developed, utilizing a nanozyme-based fuel cell to enable self-powered detection of the DsrA gene in SRB, while demonstrating excellent sensitivity, specificity, and reliability.
View Article and Find Full Text PDFEnviron Pollut
January 2025
Divisão de Recursos Microbianos, Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas (CPQBA), Universidade Estadual de Campinas (UNICAMP), CEP 13148-218, Paulínia, SP, Brasil.
The use of biofuel blends with fossil fuels is widespread globally, raising concerns over novel contamination types in environments impacted by these mixtures. This study investigates the microbial functional in soils contaminated by biofuel and fossil fuel blends and subjected to various bioremediation treatments. Using metagenomic analysis, it was compared hydrocarbon degradation functional profiles across areas polluted with ethanol/gasoline and biodiesel/diesel blends.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!