Can genetic differences explain vocal dialect variation in sperm whales, Physeter macrocephalus?

Behav Genet

Centre for Social Learning and Cognitive Evolution, School of Biology, University of St Andrews, St Andrews, Fife, UK.

Published: March 2012

Sperm whale social groups can be assigned to vocal clans based on their production of codas, short stereotyped patterns of clicks. It is currently unclear whether genetic variation could account for these behavioural differences. We studied mitochondrial DNA (mtDNA) variation among sympatric vocal clans in the Pacific Ocean, using sequences extracted from sloughed skin samples. We sampled 194 individuals from 30 social groups belonging to one of three vocal clans. As in previous studies of sperm whales, mtDNA control region diversity was low (π = 0.003), with just 14 haplotypes present in our sample. Both hierarchical AMOVAs and partial Mantel tests showed that vocal clan was a more important factor in matrilineal population genetic structure than geography, even though our sampling spanned thousands of kilometres. The variance component attributed to vocal dialects (7.7%) was an order of magnitude higher than those previously reported in birds, while the variance component attributed to geographic area was negligible. Despite this, the two most common haplotypes were present in significant quantities in each clan, meaning that variation in the control region cannot account for behavioural variation between clans, and instead parallels the situation in humans where parent-offspring transmission of language variation has resulted in correlations with neutral genes. Our results also raise questions for the management of sperm whale populations, which has traditionally been based on dividing populations into geographic 'stocks', suggesting that culturally-defined vocal clans may be more appropriate management units.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10519-011-9513-yDOI Listing

Publication Analysis

Top Keywords

vocal clans
16
sperm whales
8
sperm whale
8
social groups
8
account behavioural
8
control region
8
variance component
8
component attributed
8
vocal
7
variation
6

Similar Publications

Sperm whales (Physeter macrocephalus) are social mega-predators who form stable matrilineal units that often associate within a larger vocal clan. Clan membership is defined by sharing a repertoire of coda types consisting of specific temporal spacings of multi-pulsed clicks. It has been hypothesized that codas communicate membership across socially segregated sympatric clans, but others propose that codas are primarily used for behavioral coordination and social cohesion within a closely spaced social unit.

View Article and Find Full Text PDF

Sperm whale clans and human societies.

R Soc Open Sci

January 2024

Biology Department, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2.

Sperm whale society is structured into clans that are primarily distinguished by vocal dialects, which may be symbolic markers of clan identity. However, clans also differ in non-vocal behaviour. These distinctive behaviours, as well as clan membership itself, are learned socially, largely within matrilines.

View Article and Find Full Text PDF

Environmental variables are often the primary drivers of species' distributions as they define their niche. However, individuals, or groups of individuals, may sometimes adopt a limited range within this larger suitable habitat as a result of social and cultural processes. This is the case for Eastern Caribbean sperm whales.

View Article and Find Full Text PDF

Culture, a pillar of the remarkable ecological success of humans, is increasingly recognized as a powerful force structuring nonhuman animal populations. A key gap between these two types of culture is quantitative evidence of symbolic markers-seemingly arbitrary traits that function as reliable indicators of cultural group membership to conspecifics. Using acoustic data collected from 23 Pacific Ocean locations, we provide quantitative evidence that certain sperm whale acoustic signals exhibit spatial patterns consistent with a symbolic marker function.

View Article and Find Full Text PDF

In animal societies, identity signals are common, mediate interactions within groups, and allow individuals to discriminate group-mates from out-group competitors. However, individual recognition becomes increasingly challenging as group size increases and as signals must be transmitted over greater distances. Group vocal signatures may evolve when successful in-group/out-group distinctions are at the crux of fitness-relevant decisions, but group signatures alone are insufficient when differentiated within-group relationships are important for decision-making.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!