Comparison of chlorophyll a concentration detected by remote sensors and other chlorophyll indices in inhomogeneous turbid waters.

Appl Opt

Yigal Allon Kinneret Limnological Laboratory, Israel Oceanographic and Limnological Research, P.O. Box 447, Migdal 14950, Israel.

Published: October 2011

A new analytical approach for retrieval of the vertically weighted chlorophyll a concentration (Chl(rs)) detected by remote sensors is presented. Model calculations were carried out for the turbid waters of Lake Kinneret, Israel, and showed that Chl(rs) may be replaced by the average chlorophyll a concentration (Chl(p)) within the upper "penetration layer" 0-Z(p). The study also showed a high correlation between Chl(rs) and Chl concentration averaged in the other depth layers, namely, the 0-1 m layer, the euphotic layer (0-Z(e)), and the production layer (0-Z(pr)). Our findings are closely related to models developed for the world ocean, with the exception of periods when the dinoflagellate Peridinium gatunense blooms in the lake. We showed the effect of the pattern of vertical Chl distributions within the penetration layer on the difference between Chl(rs) and other Chl indices was conspicuous when the Chl maximum was in the uppermost 0- m layer of the water column. We assume that the presented approaches are instrumental for further development of optimal, locally adapted algorithms for remote sensing of Chl in any type of natural waters.

Download full-text PDF

Source
http://dx.doi.org/10.1364/AO.50.005770DOI Listing

Publication Analysis

Top Keywords

chlorophyll concentration
12
detected remote
8
remote sensors
8
turbid waters
8
chlrs chl
8
chl
5
layer
5
comparison chlorophyll
4
concentration
4
concentration detected
4

Similar Publications

Lead (Pb), a toxic metal, causes severe health hazards to both humans and plants due to environmental pollution. Biochar addition has been efficiently utilized to enhance growth of plants as well as yield in the presence of Pb-induced stress. The present research introduces a novel use of biochar obtained from the weed Achyranthes japonica to enhance the growth of plants in Pb-contaminated soil.

View Article and Find Full Text PDF

Modulation of Zn Ion Toxicity in L. by Phycoremediation.

Plants (Basel)

January 2025

Department of Plant Physiology, Faculty of Biology, Sofia University, 8 Dragan Tsankov Bul., 1164 Sofia, Bulgaria.

Microalgae offer a promising alternative for heavy metal removal, and the search for highly efficient strains is ongoing. This study investigated the potential of two microalgae, sp. BGV (Chlorophyta) and Schwabe & Simonsen (Cyanoprokaryota), to bind zinc ions (Zn⁺) and protect higher plants.

View Article and Find Full Text PDF

Exploring the changes in plant functional traits and their relationship with the environment in karst climax communities across different latitudes can enhance our understanding of how these communities respond to environmental gradients. In this study, we focus on climax karst climax plant communities in Guizhou Province, China. We selected three sample sites located at varying latitudes and analyzed the variations in functional traits of the plant communities at these latitudes.

View Article and Find Full Text PDF

Enhancing Acclimatization Conditions for 'Fire': A Comparative Analysis of Substrate Effects on Growth and Survival.

Plants (Basel)

January 2025

Department of Floriculture and Dendrology, Institute of Landscape Architecture, Urban Planning and Garden Art, Hungarian University of Agriculture and Life Sciences (MATE), Villányi Street 29-43, 1118 Budapest, Hungary.

This study investigates the acclimatization success of 'Fire', a popular ornamental bromeliad, through in vitro propagation on various substrates. Due to the increasing demand for , micropropagation offers a promising solution to overcome the limitations of traditional propagation methods. In this research, acclimatization was conducted in two trial types: in the one-step greenhouse conditions, and in two-step acclimatization, which introduced a controlled laboratory step before transferring plants to the greenhouse.

View Article and Find Full Text PDF

Structure of Plant Populations in Constructed Wetlands and Their Ability for Water Purification.

Plants (Basel)

January 2025

Core Botanical Gardens/Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.

In constructed wetlands (CWs) with multiple plant communities, population structure may change over time and these variations may ultimately influence water quality. However, in CWs with multiple plant communities, it is still unclear how population structure may change over time and how these variations ultimately influence water quality. Here, we established a CW featuring multiple plant species within a polder to investigate the variation in plant population structure and wastewater treatment effect for drainage water over the course of one year.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!