Discovery of a new class of DFG-out p38α kinase inhibitors with no hinge interaction is described. A computationally assisted, virtual fragment-based drug design (vFBDD) platform was utilized to identify novel non-aromatic fragments which make productive hydrogen bond interactions with Arg 70 on the αC-helix. Molecules incorporating these fragments were found to be potent inhibitors of p38 kinase. X-ray co-crystal structures confirmed the predicted binding modes. A lead compound was identified as a potent (p38α IC(50)=22 nM) and highly selective (≥ 150-fold against 150 kinase panel) DFG-out p38 kinase inhibitor.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmcl.2011.09.078DOI Listing

Publication Analysis

Top Keywords

computationally assisted
8
assisted virtual
8
virtual fragment-based
8
fragment-based drug
8
drug design
8
design vfbdd
8
p38 kinase
8
discovery novel
4
novel class
4
class non-atp
4

Similar Publications

A novel domain feature disentanglement method for multi-target cross-domain mechanical fault diagnosis.

ISA Trans

January 2025

State Key Laboratory of Computer-Aided Design and Computer Graphics, Zhejiang University, Hangzhou, 310027, China; Key Laboratory of Intelligent Rescue Equipment for Collapse Accidents, Ministry of Emergency Management, Hangzhou, 310030, China; Zhejiang Laboratory, Hangzhou, 311121, China. Electronic address:

Existing cross-domain mechanical fault diagnosis methods primarily achieve feature alignment by directly optimizing interdomain and category distances. However, this approach can be computationally expensive in multi-target scenarios or fail due to conflicting objectives, leading to decreased diagnostic performance. To avoid these issues, this paper introduces a novel method called domain feature disentanglement.

View Article and Find Full Text PDF

Advancement of the Dragon Heart 7-Series for Pediatric Patients With Heart Failure.

Artif Organs

January 2025

BioCirc Research Laboratory, School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, Pennsylvania, USA.

Background: Safe and effective pediatric blood pumps continue to lag far behind those developed for adults. To address this growing unmet clinical need, we are developing a hybrid, continuous-flow, magnetically levitated, pediatric total artificial heart (TAH). Our hybrid TAH design, the Dragon Heart (DH), integrates both an axial flow and centrifugal flow blood pump within a single, compact housing.

View Article and Find Full Text PDF

Real-Time Tractography-Assisted Neuronavigation for Transcranial Magnetic Stimulation.

Hum Brain Mapp

January 2025

Department of Neuroscience and Biomedical Engineering, School of Science, Aalto University, Espoo, Finland.

State-of-the-art navigated transcranial magnetic stimulation (nTMS) systems can display the TMS coil position relative to the structural magnetic resonance image (MRI) of the subject's brain and calculate the induced electric field. However, the local effect of TMS propagates via the white-matter network to different areas of the brain, and currently there is no commercial or research neuronavigation system that can highlight in real time the brain's structural connections during TMS. This lack of real-time visualization may overlook critical inter-individual differences in brain connectivity and does not provide the opportunity to target brain networks.

View Article and Find Full Text PDF

Introduction: During tasks like minimally invasive surgery (MIS), various factors can make working environment not be ergonomic, and those situations will accumulate fatigue in the surgeon's muscles which will inevitably lead to poor surgical performance. Therefore, there has been a need for technical solutions to solve this problem and one of the methods is exoskeleton robots.

Methods: We designed a passive shoulder exoskeleton whose workspace could be used for MIS to assist the surgeon's movements and performed computational and clinical validation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!