Directed enzyme prodrug therapy is an extensive area of research in cancer chemotherapy. Although very promising, the current directed approaches are still hampered by inefficient enzyme expression and tumor targeting. This work investigates the viability of using metal nanoparticles as a novel delivery vehicle for prodrug-activating enzymes. Using genetically incorporated amino acid sequences, a nitroreductase from E. coli was directly immobilized onto a 50 nm gold colloid, as confirmed by gel electrophoresis, DLS, and UV-vis spectroscopy. The resulting conjugates showed excellent stability in changing proton and sodium chloride environments, including PBS at 37 °C. Remarkably, the immobilized nitroreductase retained more than 99% activity to the CB1954 prodrug without the need for stabilizers. This work provides the foundation for attaching prodrug-activating enzymes to metal nanoparticles for future use in directed enzyme prodrug therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1021/la202951pDOI Listing

Publication Analysis

Top Keywords

prodrug therapy
12
directed enzyme
8
enzyme prodrug
8
metal nanoparticles
8
prodrug-activating enzymes
8
colloidal gold
4
gold modified
4
modified genetically
4
genetically engineered
4
engineered nitroreductase
4

Similar Publications

Monoamine oxidase B (MAO-B) is a key enzyme in the mitochondrial outer membrane, pivotal for the oxidative deamination of biogenic amines. Its overexpression has been implicated in the pathogenesis of several cancers, including glioblastoma and colorectal, lung, renal, and bladder cancers, primarily through the increased production of reactive oxygen species (ROS). Inhibition of MAO-B impedes cell proliferation, making it a potential therapeutic target.

View Article and Find Full Text PDF

Inhibitory effects of the combination of rapamycin with gemcitabine plus paclitaxel on the growth of pancreatic cancer tumors.

Hum Cell

January 2025

Department of Gastroenterology and Hepatology, Kochi Medical School, Kochi University, Kohasu, Oko-cho, Nankoku, Kochi, 783-8505, Japan.

We previously examined the antitumor effects of short interfering RNA nanoparticles targeting mammalian target of rapamycin (mTOR) in an orthotopic pancreatic cancer mouse model. We herein report the inhibitory effects of the mTOR inhibitor rapamycin on tumor growth in a novel established mouse model of pancreatic cancer using human pancreatic cancer cell line-derived organoids. Gemcitabine, 5-fluorouracil, and gemcitabine plus nab-paclitaxel are clinically used to treat advanced pancreatic cancer.

View Article and Find Full Text PDF

Hybrid prodrug nanoassembly for hypoxia-triggered immunogenic chemotherapy and immune modulation.

J Control Release

January 2025

Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China; NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, China; State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, China. Electronic address:

Tumor hypoxia is a critical driver of cancer progression, metastasis, and therapy resistance, posing significant challenges in effective cancer treatment. Hypoxia-activable prodrugs offer a promising strategy to target tumors in low-oxygen conditions, but their efficacy is often hindered by intrinsic properties and extrinsic cues. In this study, we developed a dual-prodrug nanoassembly system (CPPA) composed of a hypoxia-triggerable camptothecin (CPT)-based dimeric prodrug (CP) and a lipid-conjugated STAT3 antisense oligonucleotide (ASO) prodrug (PA), aiming to enhance tumor-targeted chemotherapy and overcome the immune evasion within the tumor microenvironment.

View Article and Find Full Text PDF

Bioorthogonal strategy-triggered In situ co-activation of aggregation-induced emission photosensitizers and chemotherapeutic prodrugs for boosting synergistic chemo-photodynamic-immunotherapy.

Biomaterials

January 2025

State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, PR China. Electronic address:

In situ activation of prodrugs or photosensitizers is a promising strategy for specifically killing tumor cells while avoiding toxic side effects. Herein, we originally develop a bioorthogonally activatable prodrug and pro-photosensitizer system to synchronously yield an aggregation-induced emission (AIE) photosensitizer and a chemotherapeutic drug for synergistic chemo-photodynamic-immunotherapy of tumors. By employing molecular engineering strategy, we rationally design a family of tetrazine-functionalized tetraphenylene-based photosensitizers, one of which (named TzPS5) exhibits a high turn-on ratio, a NIR emission, a typical AIE character, and an excellent ROS generation efficiency upon bioorthogonal-activation.

View Article and Find Full Text PDF

Light induced release of cisplatin from Pt(IV) prodrugs is a promising tool for precise spatiotemporal control over the antiproliferative activity of Pt-based chemotherapeutic drugs. A combination of light-controlled chemotherapy (PACT) and photodynamic therapy (PDT) in one molecule has the potential to overcome crucial drawbacks of both Pt-based chemotherapy and PDT via a synergetic effect. Herein we report green-light-activated Pt(IV) prodrug GreenPt with BODIPY-based photosentitizer in the axial position with an incredible high light response and singlet oxygen generation ability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!