The purpose of this study was to elucidate the role of α-tocopherol succinate (α-TS) in protecting mice from gastrointestinal syndrome induced by total-body irradiation. CD2F1 mice were injected subcutaneously with 400 mg/kg of α-TS and exposed to different doses of (60)Co γ radiation, and 30-day survival was monitored. Jejunum sections were analyzed for crypts and villi, PUMA (p53 upregulated modulator of apoptosis), and apoptosis (terminal deoxynucleotidyl transferase dUTP nick end labeling - TUNEL). The crypt regeneration in irradiated mice was evaluated by 5-bromo-2-deoxyuridine (BrdU). Bacterial translocation from gut to heart, spleen and liver in α-TS-treated and irradiated mice was evaluated by bacterial culture on sheep blood agar, colistin-nalidixic acid, and xylose-lysine-desoxycholate medium. Our results demonstrate that α-TS enhanced survival in a significant number of mice irradiated with 9.5, 10, 11 and 11.5 Gy (60)Co γ radiation when administered 24 h before radiation exposure. α-TS also protected the intestinal tissue of irradiated mice in terms of crypt and villus number, villus length and mitotic figures. TS treatment decreased the number of TUNEL- and PUMA-positive cells and increased the number of BrdU-positive cells in jejunum compared to vehicle-treated mice. Further, α-TS inhibited gut bacterial translocation to the heart, spleen and liver in irradiated mice. Our data suggest that α-TS protects mice from radiation-induced gastrointestinal damage by inhibiting apoptosis, promoting regeneration of crypt cells, and inhibiting translocation of gut bacteria.

Download full-text PDF

Source
http://dx.doi.org/10.1667/rr2627.1DOI Listing

Publication Analysis

Top Keywords

irradiated mice
16
mice
10
α-tocopherol succinate
8
protects mice
8
mice radiation-induced
8
radiation-induced gastrointestinal
8
60co radiation
8
mice evaluated
8
bacterial translocation
8
translocation gut
8

Similar Publications

Despite decades of improvements in cytotoxic therapy, the current standard of care for locally advanced pancreatic cancer (LAPC) provides, on average, only a few months of survival benefit. Stereotactic Body Radiation Therapy (SBRT), a technique that accurately delivers high doses of radiation to tumors in fewer fractions, has emerged as a promising therapy to improve local control of LAPC; however, its effects on the tumor microenvironment and hypoxia remain poorly understood. To explore how SBRT affects pancreatic tumors, we combined an orthotopic mouse model of pancreatic cancer with an intravital microscopy platform to visualize changes to the in vivo tumor microenvironment in real-time.

View Article and Find Full Text PDF

Over the past decades, bacterial infections resulting from the misuse of antibiotics have garnered significant attention. Among the alternative antibacterial strategies, photodynamic therapy (PDT) has emerged as a promising non-antibiotic approach. However, persistent bacterial biofilms, particularly those composed of gram-negative bacteria with their protective outer membranes, have exhibited remarkable resilience to PDT.

View Article and Find Full Text PDF

Lung cancer ranks as the most prevalent malignant neoplasm worldwide, contributing significantly to cancer-related mortality. Stemness is a well-recognized factor underlying radiotherapy resistance, recurrence and metastasis in non-small-cell lung cancer (NSCLC) patients. Our prior investigations have established the role of IQ motif containing GTPase-activating protein 3 (IQGAP3) in mediating radiotherapy resistance in lung cancer, but its impact on lung cancer stemness remains unexplored.

View Article and Find Full Text PDF

Globally, prostate cancer is the second most common malignancy in males, with over 400 thousand men dying from the disease each year. A common treatment modality for localized prostate cancer is radiotherapy. However, up to half of high-risk patients can relapse with radiorecurrent prostate cancer, the aggressive clinical progression of which remains severely understudied.

View Article and Find Full Text PDF

Background: A precise observation is that the cervix's solid tumors possess hypoxic regions where the oxygen concentration drops below 1.5%. Hypoxia negatively impacts the host's immune system and significantly diminishes the effectiveness of several treatments, including radiotherapy and chemotherapy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!