Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3189639 | PMC |
http://dx.doi.org/10.3389/fnins.2011.00118 | DOI Listing |
Small Methods
January 2025
Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208016, India.
Molecular electronics exhibiting resistive-switching memory features hold great promise for the next generation of digital technology. In this work, electrosynthesis of ruthenium polypyridyl nanoscale oligomeric films is demonstrated on an indium tin oxide (ITO) electrode followed by an ITO top contact deposition yielding large-scale (junction area = 0.7 × 0.
View Article and Find Full Text PDFNeuromorphic computing is a brain-inspired approach to hardware and algorithm design that efficiently realizes artificial neural networks. Neuromorphic designers apply the principles of biointelligence discovered by neuroscientists to design efficient computational systems, often for applications with size, weight and power constraints. With this research field at a critical juncture, it is crucial to chart the course for the development of future large-scale neuromorphic systems.
View Article and Find Full Text PDFNat Commun
January 2025
Key Lab of Fabrication Technologies for Integrated Circuits Institute of Microelectronics, Chinese Academy of Sciences, 100029, Beijing, China.
Visual sensors, including 3D light detection and ranging, neuromorphic dynamic vision sensor, and conventional frame cameras, are increasingly integrated into edge-side intelligent machines. However, their data are heterogeneous, causing complexity in system development. Moreover, conventional digital hardware is constrained by von Neumann bottleneck and the physical limit of transistor scaling.
View Article and Find Full Text PDFNat Commun
January 2025
Frontier Institute of Chip and System, Fudan University, Shanghai, 200433, China.
Inspired by biological processes, feature learning techniques, such as deep learning, have achieved great success in various fields. However, since biological organs may operate differently from semiconductor devices, deep models usually require dedicated hardware and are computation-complex. High energy consumption has made deep model growth unsustainable.
View Article and Find Full Text PDFACS Nano
January 2025
College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing 210023, China.
Flexible electronic devices in biomedicine, environmental monitoring, and brain-like computing have garnered significant attention. Among these, organic electrochemical transistors (OECTs) have been spotlighted in flexible sensors and neuromorphic circuits for their low power consumption, high signal amplification, excellent biocompatibility, chemical stability, stretchability, and flexibility. However, OECTs will also face some challenges on the way to commercialized applications, including the need for improved long-term stability, enhanced performance of N-type materials, integration with existing technologies, and cost-effective manufacturing processes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!