The aim of this study was to determine whether dietary cholecalciferol affects the recruitment and growth of axial skeletal muscle fibers in first-feeding European sea bass. Larvae were fed diets containing 0.28 (VD-L, low dose), 0.69 (VD-C, control dose), or 3.00 (VD-H, high dose) mg cholecalciferol/kg from 9 to 44 d posthatching (dph). Larvae were sampled at 44 dph for quantification of somatic growth, muscle growth, and muscle growth dynamics and at 22 and 44 dph for the relative quantification of transcripts encoded by genes involved in myogenesis, cell proliferation, and muscle structure. The weight increase of the VD-L-fed larvae was less than that of the VD-H-fed group, whereas that of VD-C-fed larvae was intermediate. The level of expression of genes involved in cell proliferation (PCNA) and early myogenesis (Myf5) decreased between 22 and 44 dph, whereas that of the myogenic determination factor MyoD1 and that of genes involved in muscle structure and function (myosin heavy chain, myosin light chains 2 and 3) increased. Dietary cholecalciferol regulated Myf5, MyoD1, myogenin, and myosin heavy chain gene expression, with a gene-specific shape of response. The maximum hypertrophy of white muscle fibers was higher in larvae fed the VD-C and VD-H diets than in larvae fed the VD-L diet. White muscle hyperplasia was highly stimulated in VD-H-fed larvae compared to VD-L- and VD-C-fed ones. These findings demonstrate a dietary cholecalciferol effect on skeletal muscle growth mechanisms of a Teleost species.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3945/jn.111.146118 | DOI Listing |
J Anim Physiol Anim Nutr (Berl)
January 2025
Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Animal Nutrition, Braunschweig, Germany.
Bone damages in laying hens are of great concern in poultry farming. Besides various risk factors like housing systems or nutrient supply during egg production, it has often been hypothesized that genetically high-performing laying hens may be more prone to bone damages. The relevance of dietary support during the rearing period of pullets for optimal bone development has been little addressed so far.
View Article and Find Full Text PDFBiol Pharm Bull
January 2025
Division of Bio-Analytical Chemistry, Faculty of Medical Technology, Niigata University of Pharmacy and Medical and Life Sciences, 265-1 Higashijima, Akiha-ku, Niigata 956-8603, Japan.
Postmenopausal women are at a higher risk of developing dyslipidemia and osteoporosis due to estrogen deficiency, necessitating regular vitamin D supplementation and the use of cholesterol inhibitors, respectively, to prevent these conditions. Despite current treatments, alternatives are needed to address both conditions simultaneously. Ergosterol, a precursor of vitamin D, is a fungal sterol converted to brassicasterol by 7-dehydrocholesterol reductase, a cholesterol biosynthesis enzyme that converts 7-dehydrocholesterol (a precursor of vitamin D) into cholesterol.
View Article and Find Full Text PDFSci Rep
January 2025
The Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen, UK.
Vitamin D is essential for healthy skeletal growth and is increasingly recognised for its role in chronic disease development, inflammation and immunity. 25-hydroxyvitamin D (25(OH)D) concentrations are an indicator of vitamin D status and are normally analysed in plasma or serum samples in clinical settings, while archaeological studies rely on the identification of skeletal markers of vitamin D deficiency, such as rickets. Here, we determined 25(OH)D concentrations in hair specimens ('locks') that had been sampled close to the root, aligned by cut end, and sliced into sequential segments from participants (n = 16), from Aberdeen, Scotland, using a modified protocol designed to minimise sample size.
View Article and Find Full Text PDFNarra J
December 2024
Department of Internal Medicine, Cipto Mangunkusumo Hospital, Jakarta, Indonesia.
The coexistence of depression and type 2 diabetes mellitus (T2DM) can significantly worsen disease prognosis and lower quality of life. Emerging evidence suggests that vitamin D deficiency contributes to the progression of T2DM and is closely associated with the development of depression. The aim of this study was to investigate the effects of cholecalciferol on depression in patients with T2DM, exploring its mechanisms by analyzing its impact on C-peptide, serotonin, and neurotrophin-3 levels.
View Article and Find Full Text PDFIn Vivo
December 2024
Department of Pharmacology and Toxicology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic.
Background/aim: Low levels of vitamin D are a widespread global issue. This study aimed to determine the optimal vitamin D3 supplementation dose for healthy young adults by comparing the effectiveness of gradually increasing cholecalciferol doses over two years.
Patients And Methods: Thirty-five volunteers participated in a two-season pilot study conducted from October to April to avoid sunlight-induced vitamin D3 synthesis.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!