Calorie restriction [CR; ∼40% below ad libitum (AL) intake] improves the health of many species, including rats, by mechanisms that may be partly related to enhanced insulin sensitivity for glucose disposal by skeletal muscle. Excessive activation of several mitogen-activated protein kinases (MAPKs), including JNK1/2, p38, and ERK1/2 has been linked to insulin resistance. Although insulin can activate ERK1/2, this effect is not required for insulin-mediated glucose uptake. We hypothesized that skeletal muscle from male 9-mo-old Fischer 344/Brown Norway rats CR (35-40% beginning at 3 mo old) versus AL rats would have 1) attenuated activation of JNK1/2, p38, and ERK1/2 under basal conditions; and 2) no difference for insulin-induced ERK1/2 activation. In contrast to our hypothesis, there were significant CR-related increases in the phosphorylation of p38 (epitrochlearis, soleus, and gastrocnemius), JNK1 (epitrochlearis and soleus), and JNK2 (gastrocnemius). Consistent with our hypothesis, CR did not alter insulin-mediated ERK1/2 activation. The greater JNK1/2 and p38 phosphorylation with CR was not attributable to diet effects on muscle oxidative stress (assessed by protein carbonyls and 4-hydroxynonenal protein conjugates). In muscles from the same rats used for the present study, we previously reported a CR-related increase in insulin-mediated glucose uptake by the epitrochlearis and the soleus (Sharma N, Arias EB, Bhat AD, Sequea DA, Ho S, Croff KK, Sajan MP, Farese RV, Cartee GD. Am J Physiol Endocrinol Metab 300: E966-E978, 2011). The present results indicate that the improved insulin sensitivity with CR is not attributable to attenuated MAPK phosphorylation in skeletal muscle.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3349379PMC
http://dx.doi.org/10.1152/ajpregu.00372.2011DOI Listing

Publication Analysis

Top Keywords

jnk1/2 p38
16
skeletal muscle
16
insulin sensitivity
12
p38 erk1/2
12
epitrochlearis soleus
12
improved insulin
8
calorie restriction
8
phosphorylation skeletal
8
insulin-mediated glucose
8
glucose uptake
8

Similar Publications

: Glioblastoma (GB) is a highly aggressive tumor, whose progression is mediated by secretion of extracellular vesicles (EVs), which can pass the brain-blood barrier and be found in the plasma. Here, we performed a comparative analysis of the effects of EVs from the plasma of healthy donors (hEVs) and GB patients before (bEVs) and after (aEVs) tumor surgical resection on invasion of normal astrocytes and GB cells. : We performed the transwell invasion assay, analyzed MAP kinases activation by Western blotting, studied SNAI1/SNAI2 cellular localization by confocal microscopy, measured cadherins expression by flow cytometry, and analyzed secretion of cytokines, which regulate migration and inflammation, by immunoassay.

View Article and Find Full Text PDF

p38α and p38β regulate osmostress-induced apoptosis.

J Biol Chem

December 2024

Institut de Neurociències, Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica, Facultad de Medicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain. Electronic address:

Hyperosmotic shock induces cytochrome c release and caspase-3 activation in Xenopus oocytes. Different signaling pathways engaged by osmostress converge on the mitochondria to trigger cell death. The mitogen-activated protein kinases (MAPKs) JNK1-1 and JNK1-2 are early activated by hyperosmotic shock and sustained activation of both isoforms accelerates the apoptotic program.

View Article and Find Full Text PDF

Ubiquitin proteasome system in cardiac fibrosis.

J Adv Res

December 2024

Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China; Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China; Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China; National Clinical Research Center for Interventional Medicine, Shanghai, China; Institutes of Biomedical Sciences, Fudan University, Shanghai, China.

Background: Cardiac fibrosis, including reactive fibrosis and replacement fibrosis, is a common pathological process in most cardiovascular diseases. The ubiquitin proteasome system (UPS) plays an important role in the development of fibrosis by mediating the degradation and synthesis of proteins involved in transforming growth factor-β (TGF-β)-dependent and TGF-β-independent fibrous pathways.

Aim Of Review: This review aims to provide an overview of ubiquitinated and deubiquitinated molecules that participating in cardiac fibrosis, with the ultimate purpose to identify promising targets for therapeutic strategies.

View Article and Find Full Text PDF

Mechanistic Study of Purple Sweet Potato Anthocyanins: Multifaceted Anti-Fibrotic Effects and Targeting of PDGFRβ in Liver Fibrosis.

J Agric Food Chem

December 2024

Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China.

The purple sweet potato anthocyanins (PSPA) are known for their diverse health benefits, yet their hepatoprotective effects and the mechanisms by which they combat liver fibrosis have not been thoroughly investigated. This study aimed to elucidate these effects by employing a carbon tetrachloride (CCl)-induced mouse model of liver fibrosis. We conducted a comprehensive analysis of the effects of PSPA on liver injury, oxidative stress, inflammation, and fibrosis-related signaling pathways.

View Article and Find Full Text PDF

Background: Pathological cardiac hypertrophy stands as a pivotal mechanism contributing to diverse cardiovascular diseases, ultimately leading to heart failure. Despite its clinical significance, the intricate molecular mechanisms instigating pathological cardiac hypertrophy remain inadequately understood. In this study, we aim to further reveal its complex pathogenesis by exploring the role of Fas apoptotic inhibitory molecule 2 (FAIM2) in modulating pathological cardiac hypertrophy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!