Inhabitants of the marine rocky intertidal live in an environment that alternates between aquatic and terrestrial due to the rise and fall of the tide. The tide creates a cyclical availability of oxygen with animals having access to oxygenated water during episodes of submergence, while access to oxygen is restricted during aerial emergence. Here we performed liquid chromatography and gas chromatography-mass spectrometry enabled metabolomic profiling of gill samples isolated from the California ribbed mussel, Mytilus californianus, to investigate how metabolism is orchestrated in this variable environment. We created a simulated intertidal environment in which mussels were acclimated to alternating high and low tides of 6 h duration, and samples were taken every 2 h for 72 h to capture reproducible changes in metabolite levels over six high and six low tides. We quantified 169 named metabolites of which 24 metabolites cycled significantly with a 12-h period that was linked to the tidal cycle. These data confirmed the presence of alternating phases of fermentation and aerobic metabolism and highlight a role for carnitine-conjugated metabolites during the anaerobic phase of this cycle. Mussels at low tide accumulated eight carnitine-conjugated metabolites, arising from the degradation of fatty acids, branched-chain amino acids, and mitochondrial β-oxidation end products. The data also implicate sphingosine as a potential signaling molecule during aerial emergence. These findings identify new levels of metabolic control whose role in intertidal adaptation remains to be elucidated.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajpregu.00453.2011 | DOI Listing |
Pathogens
December 2024
Department of Aquatic Life Medicine, Pukyong National University, Busan 48513, Republic of Korea.
White spot syndrome virus (WSSV) poses a major risk to shrimp aquaculture, and filter-feeding bivalves on shrimp farms may contribute to its persistence and transmission. This study investigated the bioaccumulation and vector potential of WSSV in Pacific oysters (), blue mussels (), and manila clams () cohabiting with WSSV-infected shrimp. Sixty individuals of each species (average shell lengths: 11.
View Article and Find Full Text PDFInt J Food Microbiol
December 2024
Institute for Marine and Antarctic Studies, University of Tasmania, 15-21 Nubeena Crescent, Taroona, Tasmania 7053, Australia.
There has been an increase in foodborne vibriosis outbreaks globally, with Vibrio parahaemolyticus emerging as a foodborne issue in temperate commercial shellfish growing regions, including southern Australia. The food safety concerns associated with these microorganisms have led to the need for specific guidance on potential risk management strategies for their control. This is the first Australian multi-seasonal survey of V.
View Article and Find Full Text PDFJ Vis Exp
December 2024
Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento; NBFC, National Biodiversity Future Center;
Hemocytes are the circulating immune-competent cells in bivalve mollusks and play a key role in several important functions of cell-mediated innate immunity. During the early stages of the immune response, hemocytes actively migrate to the site of infection. This inherent motility is a fundamental characteristic of these cells.
View Article and Find Full Text PDFAquat Toxicol
January 2025
Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, Germany; Department of Maritime Systems, Interdisciplinary Faculty, University of Rostock, Rostock, Germany. Electronic address:
Lipid-lowering drugs such as gemfibrozil (GFB) are widely used and highly biologically active, contributing to their persistence in wastewater and subsequent release into aquatic ecosystems. However, the potential impacts and toxic mechanisms of these emerging pollutants on non-target marine organisms, particularly keystone bivalves like Mytilus edulis, remain poorly understood. To address this knowledge gap, we investigated the effects of environmentally relevant concentrations of GFB (25 µg l) on oxidative, nitrosative, and dicarbonyl stress in M.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China. Electronic address:
The aggregation state of nano-TiO in the environment is altered under marine heatwaves (MHWs), thus affecting its bioavailability and toxicity to the marine organisms. Here, we investigated the toxic mechanisms and effects of nano-TiO on gut-hepatopancreas axis health of Mytilus coruscus exposed to 25 and 250 μg/L of nano-TiO under laboratory-simulated MHW. Compared with the control conditions or post-MHW cooling phase, prolonged MHW exposure significantly inhibited digestive function, decreased immune-related enzymes activities, and caused neurotoxicity in the mussels.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!