Phase transitions in quantum-dot Langmuir films.

Angew Chem Int Ed Engl

Physics and Chemistry of Nanostructures, Center for Nano and Biophotonics, Ghent University, Krijgslaan 281-S3, 9000 Gent, Belgium.

Published: December 2011

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.201105991DOI Listing

Publication Analysis

Top Keywords

phase transitions
4
transitions quantum-dot
4
quantum-dot langmuir
4
langmuir films
4
phase
1
quantum-dot
1
langmuir
1
films
1

Similar Publications

Article Synopsis
  • Researchers propose a new method for creating multiple shape memory polymers (SMPs) by mixing immiscible polymers under high pressure and shear, rather than traditional blending techniques.
  • This approach allows for nanoscale homogeneity (40-95 nm) in the blends, improving both shape memory and mechanical performance.
  • The study focused on a blend of polypropylene (PP) and polystyrene (PS), demonstrating that the processed blend achieves a strong triple shape memory effect with high shape fixation and recoverability, along with adjustable transition temperatures.
View Article and Find Full Text PDF

Using angle-resolved photoemission spectroscopy (ARPES) and density functional theory (DFT), an experimental and theoretical study of changes in the electronic structure (dispersion dependencies) and corresponding modification of the energy band gap at the Dirac point (DP) for topological insulator (TI) [Formula: see text] have been carried out with gradual replacement of magnetic Mn atoms by non-magnetic Ge atoms when concentration of the latter was varied from 10% to 75%. It was shown that when Ge concentration increases, the bulk band gap decreases and reaches zero plateau in the concentration range of 45-60% while trivial surface states (TrSS) are present and exhibit an energy splitting of 100 and 70 meV in different types of measurements. It was also shown that TSS disappear from the measured band dispersions at a Ge concentration of about 40%.

View Article and Find Full Text PDF

The preparation of new phosphor with outstanding luminescent properties for white light-emitting diodes (WLEDs) is consistently a challenging. Here in the present study, A novel white-emitting chloropatite phosphor Ca(PO)Cl:Eu was synthesized via the pechini sol gel synthesis with citric acid and polyethylene glycol (PEG) acid as a fuel at 850 °C systematically investigating the impact of doping concentration and synthesis temperature on both photoluminescence properties and crystal phase. The structural characteristics and crystalline nature of the prepared sample were investigated by using X-ray diffraction (XRD) patterns and Fourier transform infrared (FT-IR) spectra.

View Article and Find Full Text PDF

Prospects of cowpea protein as an alternative and natural emulsifier for food applications: Effect of pH and oil concentration.

Int J Biol Macromol

January 2025

Department of Food Engineering and Technology, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), Street Cristóvão Colombo, 2265, São José do Rio Preto 15054-000, Brazil. Electronic address:

In response to the growing need to expand the knowledge base on novel, more sustainable protein sources, this study investigated the effectiveness of cowpea protein concentrate (CPC) as a natural emulsifying agent, examining the relationships between pH (3-11), oil concentration (2-10 %), and emulsion stability. pH and oil concentration significantly impacted droplet size distribution, with uniformity decreasing in the order of pH 9 > pH 11 > pH 7, which was attributed to droplet coalescence and flocculation. As evidenced by circular dichroism, alkalinity induced a slight increase in the beta-sheet content of CPC, while simultaneously reducing the alpha-helix content.

View Article and Find Full Text PDF
Article Synopsis
  • Oral mucosal wounds are susceptible to inflammation and complications due to exposure to microorganisms, which can hinder daily activities and diminish quality of life.
  • A novel therapeutic nanoplatform, DATS@Arg-EA-SA, has been developed to target these wounds by combining guanidinated dendritic peptides with diallyl trisulfide (DATS), providing both antimicrobial and anti-inflammatory effects.
  • This nanoplatform effectively eliminates various bacteria, including drug-resistant strains like MRSA, and enhances healing by promoting the transition of inflammatory cells and alleviating pain, making it a promising solution for oral wound treatment.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!