Methylphenidate (MPH), a psychostimulant that affects both dopaminergic and noradrenergic systems, is one of the most frequently prescribed treatments for attention-deficit hyperactivity disorder. The present study investigated the effects of chronic administration of MPH on some parameters of oxidative stress, as well as on butyrylcholinesterase (BuChE) activity in blood of young rats. Rats received intraperitoneal injections of MPH (2.0 mg/kg) once a day, from the 15th to the 45th day of age or an equivalent volume of 0.9% saline solution (controls). Two hours after the last injection, animals were euthanized, and blood was collected. Results demonstrated that MPH did not alter the dichlorofluorescein formed, decreased both thiobarbituric acid reactive substances and total non-enzymatic radical-trapping antioxidant, and increased superoxide dismutase and catalase activities, suggesting that this psychostimulant may alter antioxidant defenses. BuChE activity was increased in blood of juvenile rats subjected to chronic MPH administration. These findings suggest that MPH may promote peripheral oxidative adaptations and cholinergic changes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11010-011-1113-x | DOI Listing |
Arch Toxicol
December 2024
Department of Medical Biotechnology, Gujarat Biotechnology University, GIFT City, Gandhinagar, 382355, Gujarat, India.
Chemotherapy, a cornerstone of cancer treatment, is frequently marred by its hepatotoxic effects, which can significantly impede therapeutic efficacy. This systematic review meticulously evaluates the hepatoprotective properties of phytochemicals and plant extracts against chemotherapy-induced liver damage, primarily in experimental animal models. Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, an exhaustive search was conducted across databases like SCOPUS, PubMed, and Web of Science, culminating in the inclusion of 61 pertinent studies.
View Article and Find Full Text PDFMetabolites
December 2024
Laboratory of Bioresources, Biotechnologies, Ethnopharmacology and Health, Faculty of Sciences, University Mohamed I, Oujda 60000, Morocco.
Hyperlipidemia is a major contributor to metabolic complications and tissue damage, leading to conditions such as liver steatosis, atherosclerosis, and obesity. This study aimed to investigate the effects of aqueous artichoke bract extract (AE) on lipid metabolism, liver antioxidative defense, and liver steatosis in mice fed a high-fat, high-sucrose diet while elucidating the underlying mechanisms. An 8-week study used hyperlipidemic mice treated with AE at daily doses of 100 and 200 mg/kg bw, compared to fenofibrate.
View Article and Find Full Text PDFMetabolites
December 2024
Fisheries Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 611730, China.
Rice-fish farming is an ancient and enduring aquaculture model in China. This study aimed to assess the variations in digestive enzymes, antioxidant properties, glucose metabolism, and nutritional content between reared in paddy fields and ponds. Notably, the levels of amylase and trypsin in from rice paddies were considerably higher compared to those from ponds.
View Article and Find Full Text PDFMetabolites
December 2024
Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
ALDH1L1 plays a crucial role in folate metabolism, regulating the flow of one-carbon groups through the conversion of 10-formyltetrahydrofolate to tetrahydrofolate and CO in a NADP-dependent reaction. The downregulation of ALDH1L1 promotes malignant tumor growth, and silencing of ALDH1L1 is commonly observed in many cancers. In a previous study, knockout (KO) mice were found to have an altered liver metabotype, including significant alterations in glycine and serine.
View Article and Find Full Text PDFJ Cardiovasc Dev Dis
December 2024
Department of Physiology, Immunology and Pathophysiology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia.
Maintaining the physiological function of the vascular endothelium and endothelial glycocalyx is crucial for the prevention of cardiovascular disease, which is one of the leading causes of morbidity and mortality worldwide. Damage to these structures can lead to atherosclerosis, hypertension, and other cardiovascular problems, especially in individuals with risk factors such as diabetes and obesity. Endothelial dysfunction is associated with ischemic disease and has a negative impact on overall cardiovascular health.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!