Alterations of the serotonergic system are involved in the pathophysiology of mood disorders and represent an important target for its pharmacological treatment. Genetic deletion of the serotonin transporter (SERT) in rodents leads to an anxious and depressive phenotype, and is associated with reduced neuronal plasticity as indicated by decreased brain-derived neurotrophic factor (Bdnf) expression levels. One of the transcription factors regulating Bdnf is the neuronal PAS domain protein 4 (Npas4), which regulates activity-dependent genes and neuroprotection, and has a critical role in the development of GABA synapses. On the basis of these premises, we investigated the expression of Npas4 and GABAergic markers in the hippocampus and prefrontal cortex of homozygous (SERT(-/-)) and heterozygous (SERT(+/-)) knockout rats, and analyzed the effect of long-term duloxetine treatment on the expression of these targets. We found that Npas4 expression was reduced in both the brain structures of adult SERT(+/-) and SERT(-/-) animals. This effect was already present in adolescent SERT(-/-), and could be mimicked by prenatal exposure to the antidepressant fluoxetine. Moreover, SERT(-/-) rats showed a strong impairment of the GABAergic system, as indicated by the reduction of several markers, including the vesicular transporter (Vgat), glutamic acid decarboxylase-67 (Gad67), the receptor subunit GABA A receptor, gamma 2 (GABA(A)-γ2), and calcium-binding proteins that label subgroups of the GABAergic neurons. Interestingly, chronic treatment with the antidepressant duloxetine was able to restore the physiological levels of Npas4 and GABAergic markers in SERT(-/-) rats, although some differences in the modulation of GABAergic genes exist between hippocampus and prefrontal cortex. Our results demonstrate that SERT knockout rats, an animal model of mood disorders, have reduced Npas4 expression that correlates with decreased expression of Bdnf exon I and IV. These changes lead to an impairment of the GABAergic system that may contribute to the anxious and depressive phenotype associated with inherited SERT downregulation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3260971 | PMC |
http://dx.doi.org/10.1038/npp.2011.252 | DOI Listing |
Elife
December 2021
Department of Experimental Medicine, University of Genova, Genova, Italy.
The repressor-element 1-silencing transcription/neuron-restrictive silencer factor (REST/NRSF) controls hundreds of neuron-specific genes. We showed that REST/NRSF downregulates glutamatergic transmission in response to hyperactivity, thus contributing to neuronal homeostasis. However, whether GABAergic transmission is also implicated in the homeostatic action of REST/NRSF is unknown.
View Article and Find Full Text PDFNeuropharmacology
February 2022
Department of Physiology and Biophysics, State University of New York at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY, 14214, USA. Electronic address:
Microduplication of the human 16p11.2 gene locus is associated with a range of neurodevelopmental outcomes, including autism spectrum disorder (ASD). Mice carrying heterozygous 16p11.
View Article and Find Full Text PDFCell Rep
July 2021
Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungangdae-Ro, Hyeonpoong-Eup, Dalseong-Gun, Daegu 42988, Korea. Electronic address:
Activity-dependent GABAergic synapse plasticity is important for normal brain functions, but the underlying molecular mechanisms remain incompletely understood. Here, we show that Npas4 (neuronal PAS-domain protein 4) transcriptionally regulates the expression of IQSEC3, a GABAergic synapse-specific guanine nucleotide-exchange factor for ADP-ribosylation factor (ARF-GEF) that directly interacts with gephyrin. Neuronal activation by an enriched environment induces Npas4-mediated upregulation of IQSEC3 protein specifically in CA1 stratum oriens layer somatostatin (SST)-expressing GABAergic interneurons.
View Article and Find Full Text PDFFront Cell Dev Biol
June 2021
Laboratory of Psychopharmacology and Molecular Psychiatry, Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy.
Epidemiological studies have shown that environmental insults and maternal stress during pregnancy increase the risk of several psychiatric disorders in the offspring. Converging lines of evidence from humans, as well as from rodent models, suggest that prenatal stress (PNS) interferes with fetal development, ultimately determining changes in brain maturation and function that may lead to the onset of neuropsychiatric disorders. From a molecular standpoint, transcriptional alterations are thought to play a major role in this context and may contribute to the behavioral phenotype by shifting the expression of genes related to excitatory and inhibitory (E/I) transmission balance.
View Article and Find Full Text PDFInt J Mol Sci
December 2020
College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro 194-31, Osong-eup, Heungduk-gu, Cheongju, Chungbuk 28160, Korea.
Background: Epilepsy is a chronic neurological disorder characterized by the recurrence of seizures. One-third of patients with epilepsy may not respond to antiseizure drugs.
Purpose: We aimed to examine whether D-limonene, a cyclic monoterpene, exhibited any antiseizure activity in the pentylenetetrazole (PTZ)-induced kindling mouse model and in vitro.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!