Microcirculation response to local cooling in patients with Huntington's disease.

J Neurol

Medical Faculty, Institute of Physiology, University of Ljubljana, Zaloska 4, 1000, Ljubljana, Slovenia.

Published: May 2012

Altered autonomic nervous system (ANS) functioning in early stages of Huntington's disease (HD) has been suggested, presumably due to distorted high-order autonomic control. ANS functioning in the early stages of HD was further investigated. Laser-Doppler (LD) flux in the skin of the fingertips, heart rate (HR), HR variability, systolic and diastolic blood pressure were measured during rest and during a 6 min cooling of one hand at 15°C. Data of 15 presymptomatic gene mutation carriers (PHD), 15 early symptomatic HD patients (EHD), and two groups of 15 age- and sex-matched controls were compared. The area under the low frequency (LF) and high frequency (HF) bands of the HR variability spectrum were calculated. An augmented reduction of cutaneous LD flux was found in response to the direct cooling in the PHD group (37.5 ± 8.5% of resting value) compared to the PHD controls (67.27 ± 8.4%) (p < 0.05). In addition, the PHD group had higher (LF/(LF + HF) index of primary sympathetic modulation of the HR at rest (53.6 ± 3.3) compared to the EHD patients (39.7 ± 4.2) (p < 0.05). In the EHD group, a significantly smaller change of HR during cooling (100.26 ± 1.2%) was found compared to the EHD controls (95.9 ± 1.0%) (p < 0.05). The results are in line with the hypothesis that ANS dysfunction occurs even in PHD subjects. Further, they support the hypothesis that dysfunction of the high-order autonomic centres are involved in HD.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00415-011-6279-3DOI Listing

Publication Analysis

Top Keywords

huntington's disease
8
ans functioning
8
functioning early
8
early stages
8
high-order autonomic
8
phd group
8
compared ehd
8
phd
5
microcirculation response
4
response local
4

Similar Publications

Background: There are no disease modifying therapies for Huntington's disease (HD), a rare but fatal genetic neurodegenerative condition. To develop and test new management strategies, a better understanding of the mechanisms underlying HD progression is needed. Aberrant changes in thalamo-cortical and striato-cerebellar circuitry have been observed in asymptomatic HD, along with transient enlargement of the dentate nucleus.

View Article and Find Full Text PDF

Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder characterized by a repeat of the cytosine-adenine-guanine trinucleotide (CAG) in the huntingtin gene (HTT). This results in the translation of a mutant huntingtin (mHTT) protein with an abnormally long polyglutamine (polyQ) repeat. The pathology of HD leads to neuronal cell loss, motor abnormalities, and dementia.

View Article and Find Full Text PDF

ARCH: Large-scale knowledge graph via aggregated narrative codified health records analysis.

J Biomed Inform

January 2025

Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, 02115, MA, USA; VA Boston Healthcare System, 150 S Huntington Ave, Boston, 02130, MA, USA. Electronic address:

Objective: Electronic health record (EHR) systems contain a wealth of clinical data stored as both codified data and free-text narrative notes (NLP). The complexity of EHR presents challenges in feature representation, information extraction, and uncertainty quantification. To address these challenges, we proposed an efficient Aggregated naRrative Codified Health (ARCH) records analysis to generate a large-scale knowledge graph (KG) for a comprehensive set of EHR codified and narrative features.

View Article and Find Full Text PDF

Vitamin B (thiamine) plays an important role in human metabolism. It is essential for the proper growth and development of the body and has a positive effect on the functioning of the digestive, cardiovascular, and nervous systems. Additionally, it stimulates the brain and improves the psycho-emotional state.

View Article and Find Full Text PDF

Associations Between Diabetes Mellitus and Neurodegenerative Diseases.

Int J Mol Sci

January 2025

Chair and Department of General Biology and Parasitology, Medical University of Warsaw, Chałubińskiego 5, 02-004 Warsaw, Poland.

Diabetes mellitus (DM) and neurodegenerative diseases/disturbances are worldwide health problems. The most common chronic conditions diagnosed in persons 60 years and older are type 2 diabetes mellitus (T2DM) and cognitive impairment. It was found that diabetes mellitus is a major risk for cognitive decline, dementia, Parkinson's disease (PD), Alzheimer's disease (AD), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS) and other neurodegenerative disorders.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!