Download full-text PDF

Source
http://dx.doi.org/10.1038/jid.2011.326DOI Listing

Publication Analysis

Top Keywords

absence mismatch
4
mismatch repair
4
repair deficiency-related
4
deficiency-related microsatellite
4
microsatellite instability
4
instability non-melanoma
4
non-melanoma skin
4
skin cancer
4
absence
1
repair
1

Similar Publications

The [4Fe-4S] cluster is an important cofactor of the base excision repair (BER) adenine DNA glycosylase MutY to prevent mutations associated with 8-oxoguanine (OG). Several MutYs lacking the [4Fe-4S] cofactor have been identified. Phylogenetic analysis shows that clusterless MutYs are distributed in two clades suggesting cofactor loss in two independent evolutionary events.

View Article and Find Full Text PDF

Dynamic random access memory (DRAM) has been a cornerstone of modern computing, but it faces challenges as technology scales down, particularly due to the mismatch between reduced storage capacitance and increasing OFF current. The capacitorless 2T0C DRAM architecture is recognized for its potential to offer superior area efficiency and reduced refresh rate requirements by eliminating the traditional capacitor. The exploration of two-dimensional (2D) materials further enhances scaling possibilities, though the absence of dangling bonds complicates the deposition of high-quality dielectrics.

View Article and Find Full Text PDF

The bioinformatics analysis and experimental validation of the carcinogenic role of EXO1 in lung adenocarcinoma.

Front Oncol

December 2024

Department of Pathology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.

Background: Exonuclease 1 (EXO1), a protein involved in mismatch repair and recombination processes, has been identified as a prognostic biomarker in lung adenocarcinoma (LUAD). Nevertheless, its role in LUAD progression remains elusive. This study seeks to elucidate the functional significance of EXO1 in LUAD and evaluate its potential as a therapeutic target.

View Article and Find Full Text PDF

Molecular Beam Epitaxial Growth and Optical Properties of InN Nanostructures on Large Lattice-Mismatched Substrates.

Materials (Basel)

December 2024

State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China.

Narrow-gap InN is a desirable candidate for near-infrared (NIR) optical communication applications. However, the absence of lattice-matched substrates impedes the fabrication of high-quality InN. In this paper, we employed Molecular Beam Epitaxy (MBE) to grow nanostructured InN with distinct growth mechanisms.

View Article and Find Full Text PDF

Background: Microsatellite instability-high (MSI-high) tumors comprise ~15% of sporadic colorectal cancers (CRC) and are associated with elevated T cell infiltration. However, the universality of this response across T cell subtypes with distinct functions is unknown.

Methods: Including 1,236 CRC tumors from three observational studies, we conducted T cell profiling using a customized 9-plex (CD3, CD4, CD8, CD45RA, CD45RO, FOXP3, KRT, MKI67, and DAPI) multispectral immunofluorescence assay.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!