Biomass production and oil productivity in microalgae culture are the most important key factors for algal biodiesel production. However, proper culture condition for the biomass production of microalgae is different from that for the oil production of microalgae. A study on the biomass production of Tetraselmis suecica using various light intensities and nitrate concentrations as growth factors was carried out to evaluate proper culture conditions in 20-L batch culture. The effect of nitrate depletion on the oil accumulation was also evaluated with two-stage culture. It took 5 days to reach the stationary phase for the cultures of T. suecica on the light intensities of 108.9 and 133.1 μmol m(-2 )s(-1) with biomass of 0.89 and 0.88 g dcw L(-1), respectively. Biomass productions of 1.07 and 1.00 g dcw L(-1) were obtained with the nitrate concentrations of 18.6 and 24.7 mg L(-1), respectively. The two-stage culture increased oil contents from 7.6 to 17.3% (w/w) and contents of C(16)-C(18) fatty acids from 540.2 to 720.5 mg g(-1) oil. The predominant fatty acid was palmitic acid (C(16:0)) in nitrate depletion group, however, oleic acid (C(18:1)) was predominated in nitrate added groups. The two-stage culture enhanced overall oil productivity of 18.7 mg g(-1) day(-1) which is higher than that of 12.2 mg g(-1) day(-1) in single-stage culture.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00449-011-0635-7 | DOI Listing |
PLoS One
January 2025
Molecular Virology Labs, Department of Biosciences, Comsats University Islamabad, Islamabad, Pakistan.
Arsenic-resistant Klebsiella oxytoca strain AT-02 was isolated from the ground water of the Multan region of Pakistan. The strain displayed high arsenite and arsenate resistance as minimal inhibitory concentration (MIC) was 600ppm and 10,000ppm respectively. The high tolerance of the isolated strain towards arsenate can be postulated due to significant increase in biofilm in response to arsenate.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
Institute of Nanfan and Seed Industry, Guangdong Academy of Sciences, Guangzhou 510220, People's Republic of China.
Aquatic biomass, particularly microalgae and duckweed, presents a promising and sustainable alternative source of plant-based protein and bioactive compounds for food and feed applications. This review highlights the nutritional potential of these aquatic species, focusing on their high protein content, rapid growth rates, and adaptability to nonarable environments. Microalgae, such as and spp.
View Article and Find Full Text PDFPhytochem Anal
January 2025
Institute of Biology, Federal Research Centre Komi Science Center, Ural Branch of the Russian Academy of Sciences, Syktyvkar, Russia.
Introduction: Vitex L. is a large genus of tropical and subtropical trees used in medicine of many nations. Some species are used in gynecology due to flavonoids, iridoids, and diterpenes.
View Article and Find Full Text PDFChem Sci
January 2025
BMI Center for Biomass Materials and Nanointerfaces, National Engineering Laboratory for Clean Technology of Leather Manufacture, Ministry of Education Key Laboratory of Leather Chemistry and Engineering, College of Biomass Science and Engineering, Sichuan University Chengdu Sichuan 610065 China
Single-atom catalysts (SACs) dispersed on support materials exhibit exceptional catalytic properties that can be fine-tuned through interactions between the single atoms and the support. However, selectively controlling the spatial location of single metal atoms while simultaneously harmonizing their coordination environment remains a significant challenge. Here, we present a phenolic-mediated interfacial anchoring (PIA) strategy to prepare SACs with Fe single atoms anchored on the surface of heteroatom-doped carbon nanospheres.
View Article and Find Full Text PDFHeliyon
January 2025
Biomass Conversion and Bioproducts Laboratory, Center for Bioenergy, School of Chemical & Biotechnology, SASTRA Deemed University, Thirumalaisamudram, Tamil Nadu, India.
Plastic pollution is a worrying problem, and its degradation is a laborious process. Although enzymatic plastic breakdown is a sustainable method, drawbacks such as numerous plastic kinds of waste make the degradation challenging. Therefore, a multi-plastic degrading (MPD) enzyme becomes necessary.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!