Few studies of microbial biogeography address variability across both multiple habitats and multiple seasons. Here we examine the spatial and temporal variability of bacterioplankton community composition of the Columbia River coastal margin using 16S amplicon pyrosequencing of 300 water samples collected in 2007 and 2008. Communities separated into seven groups (ANOSIM, P<0.001): river, estuary, plume, epipelagic, mesopelagic, shelf bottom (depth<350 m) and slope bottom (depth>850 m). The ordination of these samples was correlated with salinity (ρ=-0.83) and depth (ρ=-0.62). Temporal patterns were obscured by spatial variability among the coastal environments, and could only be detected within individual groups. Thus, structuring environmental factors (for example, salinity, depth) dominate over seasonal changes in determining community composition. Seasonal variability was detected across an annual cycle in the river, estuary and plume where communities separated into two groups, early year (April-July) and late year (August-Nov), demonstrating annual reassembly of communities over time. Determining both the spatial and temporal variability of bacterioplankton communities provides a framework for modeling these communities across environmental gradients from river to deep ocean.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3280145 | PMC |
http://dx.doi.org/10.1038/ismej.2011.135 | DOI Listing |
Sci Rep
January 2025
College of Engineering, Ocean University of China, Qingdao, 266404, China.
Although deterministic analysis can provide initial insights into slope stability, there is no way to reflect the true distribution of soil properties within a slope. To further investigate the effects of the spatial variability of soil properties on the stability and failure mechanism of slope under different foundation types, this study develops a framework combining simple limit equilibrium method (LEM), Monte Carlo Simulation (MCS), and random field to incorporate these factors into slope probabilistic stability analysis. The slope models of two typical foundations (e.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA.
Aerobic and anaerobic organisms and their functions are spatially or temporally decoupled at scales ranging from individual cells to ecosystems and from minutes to hours. This is due to competition for energy substrates and/or biochemical incompatibility with oxygen (O). Here we report a chemolithotrophic Aquificales bacterium, Hydrogenobacter, isolated from a circumneutral hot spring in Yellowstone National Park (YNP) capable of simultaneous aerobic and anaerobic respiration when provided with hydrogen (H), elemental sulfur (S), and O.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
College of Resources and Environmental Sciences, Henan Agricultural University, Zhengzhou 450046, China. Electronic address:
Nitrate (NO) pollution in groundwater is a worldwide environmental issue, particularly in developed planting-breeding areas where there is a substantial presence of nitrogen-related sources. Here, we explored the key sources and potential health risks of NO in a typical planting-breeding area in the North China Plain based on dual stable isotopes and Monte Carlo simulations. The analysis results revealed that the NO concentration ranged from 0.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2025
Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås 1432, Norway.
Wildlife populations are not static. Intrinsic and extrinsic factors affect individuals, which lead to spatiotemporal variation in population density and range. Yet, dynamics in density and their drivers are rarely documented, due in part to the inherent difficulty of studying long-term population-level phenomena at ecologically meaningful scales.
View Article and Find Full Text PDFRev Sci Instrum
January 2025
Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, Fujian 361005, China.
A two-degree-of-freedom bistable energy harvester with a spring-magnet oscillator designed for ultra-low frequency vibration energy harvesting is presented in this paper. It combines magnetic plucking frequency upconversion and a variable potential function to achieve a high-efficiency response while also being suitably installed for applications with spatial limitations. A lumped parameter model of the piezoelectric energy harvester and the magnetic dipoles is applied to develop the theoretical model for the system.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!