Phosphoproteomic profiling of the myocyte.

Circ Cardiovasc Genet

Discipline of Pathology, School of Medical Sciences, The University of Sydney, New South Wales, Australia.

Published: October 2011

Protein phosphorylation underpins major cellular processes including energy metabolism, signal transduction, excitation-contraction coupling, apoptosis, and cell survival mechanisms and is thus critical to the myocyte. Targeted approaches, whereby a handful of phosphoproteins are investigated, can suffer from a relatively narrow view of cellular phosphorylation. In contrast, recent technical advances have allowed for the comprehensive documentation of phosphorylation events in complex biological environments, providing a deeper view of the "phosphoproteome." A global, high-throughput characterization of the myocardial phosphoproteome, however, has not yet been achieved. Efficient analysis of phosphorylated proteins and their roles in a dynamic cellular environment requires high-resolution strategies that can identify, localize, and quantify many thousands of phosphorylation sites in a single experiment. Such an approach requires specific enrichment and purification techniques, developed to align with high-end instrumentation for analysis. Cutting-edge phosphoproteomics is no longer restricted to gel-based technology, instead focusing on affinity enrichment prior to liquid chromatography and mass spectrometry. We will describe the best current methods and how they can be applied, as well as the challenges associated with them. We also present current phosphoproteomic investigations in the myocyte and its subcompartments. Although the techniques and instrumentation required to achieve the goal of a myocardial phosphoprotein catalog in physiological and diseased states are highly specialized, the potential biological insight provided by such an approach makes phosphoproteomics an important new avenue of investigation for the cardiovascular researcher.

Download full-text PDF

Source
http://dx.doi.org/10.1161/CIRCGENETICS.110.957787DOI Listing

Publication Analysis

Top Keywords

phosphoproteomic profiling
4
profiling myocyte
4
myocyte protein
4
phosphorylation
4
protein phosphorylation
4
phosphorylation underpins
4
underpins major
4
major cellular
4
cellular processes
4
processes including
4

Similar Publications

Periodontal disease is recognized as a chronic multifactorial inflammatory condition initiated by dysbiosis within subgingival plaque biofilms. Antimicrobial peptides exhibit a wide spectrum of antimicrobial action, and thus, provide one of the first lines of host defense against oral pathogens. Aged garlic extract (AGE) is effective for preventing the progression of periodontal disease.

View Article and Find Full Text PDF

Integral-Omics: Serial Extraction and Profiling of Metabolome, Lipidome, Genome, Transcriptome, Whole Proteome and Phosphoproteome Using Biopsy Tissue.

Anal Chem

January 2025

Affiliated Hangzhou First People's Hospital, State Key Laboratory of Medical Proteomics, School of Medicine, Westlake University, Hangzhou, Zhejiang Province 310006, China.

The integrative multiomics characterization of minute amounts of clinical tissue specimens has become increasingly important. Here, we present an approach called Integral-Omics, which enables sequential extraction of metabolites, lipids, genomic DNA, total RNA, proteins, and phosphopeptides from a single biopsy-level tissue specimen. We benchmarked this method with various samples, applied the workflow to perform multiomics profiling of tissues from six patients with colorectal cancer, and found that tumor tissues exhibited suppressed ferroptosis pathways at multiomics levels.

View Article and Find Full Text PDF

: Macrophage-mediated cancer cell phagocytosis has demonstrated considerable therapeutic potential. While the initiation of phagocytosis, facilitated by interactions between cancer cell surface signals and macrophage receptors, has been characterized, the mechanisms underlying its sustentation and attenuation post-initiation remain poorly understood. : Through comprehensive phosphoproteomic profiling, we interrogated the temporal evolution of the phosphorylation profiles within macrophages during cancer cell phagocytosis.

View Article and Find Full Text PDF

Introduction: Type 2 diabetes increases the risk of Alzheimer's disease (AD) dementia. Insulin signaling dysfunction exacerbates tau protein phosphorylation, a hallmark of AD pathology. However, the comprehensive impact of diabetes on patterns of AD-related phosphoprotein in the human brain remains underexplored.

View Article and Find Full Text PDF

When plants are exposed to drought stress, there is a trade-off between plant growth and stress responses. Here, we identified a signaling mechanism for the initial steps of the drought-growth trade-off. Phosphoproteomic profiling revealed that Raf13, a B1 subgroup Raf-like kinase, is dephosphorylated under drought conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!