This paper presents the development of a neuro-fuzzy agent for ambient-intelligence environments. The agent has been implemented as a system-on-chip (SoC) on a reconfigurable device, i.e., a field-programmable gate array. It is a hardware/software (HW/SW) architecture developed around a MicroBlaze processor (SW partition) and a set of parallel intellectual property cores for neuro-fuzzy modeling (HW partition). The SoC is an autonomous electronic device able to perform real-time control of the environment in a personalized and adaptive way, anticipating the desires and needs of its inhabitants. The scheme used to model the intelligent agent is a particular class of an adaptive neuro-fuzzy inference system with piecewise multilinear behavior. The main characteristics of our model are computational efficiency, scalability, and universal approximation capability. Several online experiments have been performed with data obtained in a real ubiquitous computing environment test bed. Results obtained show that the SoC is able to provide high-performance control and adaptation in a life-long mode while retaining the modeling capabilities of similar agent-based approaches implemented on larger computing machines.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TSMCB.2011.2168516 | DOI Listing |
Animals (Basel)
December 2024
Division of Artificial Intelligence Engineering, National Korea Maritime & Ocean University, Busan 49112, Republic of Korea.
While the pet market is continuously rapidly increasing in Korea, pet dog owners feel uncomfortable in coping with pet dog's health problems in time. In this paper, we propose a pre-diagnosis system based on neuro-fuzzy learning, enabling non-expert users to monitor their pets' health by inputting observed symptoms. To develop such a system, we form a disease-symptom database based on several textbooks with veterinarians' guidance and filtering.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Petroleum Engineering, Ahvaz Faculty of Petroleum, Petroleum University of Technology, Ahvaz, Iran.
Smart water injection (SWI) is a practical enhanced oil recovery (EOR) technique that improves displacement efficiency on micro and macro scales by different physiochemical mechanisms. However, the development of a reliable smart tool to predict oil recovery factors is necessary to reduce the challenges related to experimental procedures. These challenges include the cost and complexity of experimental equipment and time-consuming experimental methods for obtaining the recovery factor (RF).
View Article and Find Full Text PDFSci Rep
December 2024
Chitkara Centre for Research and Development, Chitkara University, Baddi, 174103, Himachal Pradesh, India.
This paper addresses the smart management and control of an independent hybrid system based on renewable energies. The suggested system comprises a photovoltaic system (PVS), a wind energy conversion system (WECS), a battery storage system (BSS), and electronic power devices that are controlled to enhance the efficiency of the generated energy. Regarding the load side, the system comprises AC loads, DC loads, and a water pump.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Electrical Engineering, College of Engineering, King Saud University, Riyadh, 11421, Saudi Arabia.
The world is moving towards the utilization of hydrogen vehicle technology because its advantages are uniformity in power production, more efficiency, and high durability when compared to fossil fuels. So, in this work, the Proton Exchange Membrane Fuel Stack (PEMFS) device is selected for producing the energy for the hydrogen vehicle. The merits of this fuel technology are the possibility of operating less source temperature, and more suitability for stationery and transportation applications.
View Article and Find Full Text PDFJ Environ Manage
December 2024
Institute of Hydro-Engineering, Polish Academy of Sciences, Poland. Electronic address:
Sea surface displacement (SSD) is a crucial parameter in environmental engineering. The measurements of SSD are susceptible to the failure of instruments and equipment, data losses, and other unpredictable events. In this study, we developed an innovative nonlinear regression trees (NRT) technique to retrieve the missing data of SSD.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!