Objective: To evaluate current evidence for the use of lacosamide in the treatment of refractory status epilepticus.
Data Sources: Literature was accessed via PubMed (through July 2011) using the terms lacosamide and status epilepticus.
Study Selection And Data Extraction: All reports on the use of lacosamide in patients with status epilepticus were included for evaluation. Reviews and animal data were excluded.
Data Synthesis: Treatment of status epilepticus is challenging, and most patients fail to respond to initial treatment. Recently, several reports have been published on the use of lacosamide for status epilepticus. Eleven reports (5 case reports and 6 case series) were identified. Lacosamide was credited with successful termination of status epilepticus in a majority of these reports. However, the data are weakened by the heterogeneity of the reports, their descriptive nature, and the common divergence from current recommendations for the treatment of status epilepticus.
Conclusions: While lacosamide has been reported as an effective treatment for refractory status epilepticus, there is insufficient evidence for its routine use. For cases in which the risks associated with anesthetizing drugs are believed to outweigh the benefits, such as in complex partial status epilepticus, lacosamide may be a reasonable option after more established drug therapies fail.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1345/aph.1Q461 | DOI Listing |
J Neurol Sci
January 2025
The Gaffin Center for Neuro-Oncology, Sharett Institute of Oncology, Hadassah Medical Center, and Faculty of Medicine, The Hebrew University of Jerusalem, Israel. Electronic address:
Introduction: Herpes encephalitis is known to affect patients undergoing brain radiotherapy, but early diagnosis and treatment, the foremost determinants of disease outcome, remain challenging in this patient population. This can be due to attribution of symptoms to the brain tumor and radiation side effects, as well as patients' atypical clinical presentation. Here we sought to highlight pearls and pitfalls in the clinical course and diagnostic workup which may facilitate timely diagnosis and improve disease outcome.
View Article and Find Full Text PDFCell Rep
January 2025
Nash Family Department of Neuroscience, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA. Electronic address:
Temporal lobe epilepsy (TLE) causes pervasive and progressive memory impairments, yet the specific circuit changes that drive these deficits remain unclear. To investigate how hippocampal-entorhinal dysfunction contributes to progressive memory deficits in epilepsy, we performed simultaneous in vivo electrophysiology in the hippocampus (HPC) and medial entorhinal cortex (MEC) of control and epileptic mice 3 or 8 weeks after pilocarpine-induced status epilepticus (Pilo-SE). We found that HPC synchronization deficits (including reduced theta power, coherence, and altered interneuron spike timing) emerged within 3 weeks of Pilo-SE, aligning with early-onset, relatively subtle memory deficits.
View Article and Find Full Text PDFIBRO Neurosci Rep
June 2025
Department of Pharmacy, University of Mountains, P.O. Box 208, Bangangté, Cameroon.
Background And Aim: To date, there is no treatment to prevent the development of temporal lobe epilepsy, the most common form of drug-resistant epilepsy. A recent study revealed the antiepileptic-like effect of the aqueous extract of . Given the potential of this extract, the antiepileptogenic- and learning and memory-facilitating-like effects of the aqueous extract of were assessed using the kainate-induced post- model.
View Article and Find Full Text PDFExp Neurol
January 2025
Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam UMC, University of Amsterdam, Department of (Neuro) Pathology, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, the Netherlands; Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, the Netherlands. Electronic address:
Decreased capillary expression of low-density lipoprotein receptor-related protein 1 (LRP1) has been linked to increased brain amyloid beta (Aβ) accumulation in Alzheimer's disease (AD). Aβ accumulation has also been observed in (a subset of) temporal lobe epilepsy (TLE) patients, suggesting a potential link between epilepsy and AD. This study examines cellular LRP1 expression in human and rat epileptogenic brain tissue to explore LRP1's role in epilepsy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!