A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Metabolomic analysis reveals that the accumulation of specific secondary metabolites in Echinacea angustifolia cells cultured in vitro can be controlled by light. | LitMetric

Echinacea angustifolia cell suspension cultures are usually grown and maintained in the dark, but we also exposed cells to light for one culture cycle (14 days) and then compared the metabolomes of dark-grown and illuminated cells by liquid chromatography-mass spectrometry. Among 256 signals, we putatively identified 159 molecules corresponding to 56 different metabolites plus their fragments, adducts and isotopologs. The E. angustifolia metabolome consisted mainly of caffeic acid derivatives, comprising (a) caffeic acid conjugated with tartaric, quinic and hexaric acids; and (b) caffeic acid conjugated with hydroxytyrosol glycosides (e.g., echinacoside, verbascoside and related molecules). Many of these metabolites have not been previously described in E. angustifolia, which currently lacks detailed metabolic profiles. Exposure to light significantly increased the levels of certain caffeic acid derivatives (particularly caffeoylquinic acids and hydroxytyrosol derivatives lacking rhamnose residues) and reduced the level of hydroxytyrosol derivatives with rhamnose residues, revealing that light specifically inhibits the rhamnosylation of caffeoyl phenylethanoid glycosides. These results are significant because they suggest that the metabolic profile of cell cultures can be manipulated by controlling simple environmental variables such as illumination to modulate the levels of potentially therapeutic compounds.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00299-011-1171-2DOI Listing

Publication Analysis

Top Keywords

caffeic acid
16
echinacea angustifolia
8
acid derivatives
8
acid conjugated
8
hydroxytyrosol derivatives
8
rhamnose residues
8
metabolomic analysis
4
analysis reveals
4
reveals accumulation
4
accumulation specific
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!