Background: Butanol is a second generation biofuel produced by Clostridium acetobutylicum through acetone-butanol-ethanol (ABE) fermentation process. Shotgun proteomics provides a direct approach to study the whole proteome of an organism in depth. This paper focuses on shotgun proteomic profiling of C. acetobutylicum from ABE fermentation using glucose and xylose to understand the functional mechanisms of C. acetobutylicum proteins involved in butanol production.
Results: We identified 894 different proteins in C. acetobutylicum from ABE fermentation process by two dimensional - liquid chromatography - tandem mass spectrometry (2D-LC-MS/MS) method. This includes 717 proteins from glucose and 826 proteins from the xylose substrate. A total of 649 proteins were found to be common and 22 significantly differentially expressed proteins were identified between glucose and xylose substrates.
Conclusion: Our results demonstrate that flagellar proteins are highly up-regulated with glucose compared to xylose substrate during ABE fermentation. Chemotactic activity was also found to be lost with the xylose substrate due to the absence of CheW and CheV proteins. This is the first report on the shotgun proteomic analysis of C. acetobutylicum ATCC 824 in ABE fermentation between glucose and xylose substrate from a single time data point and the number of proteins identified here is more than any other study performed on this organism up to this report.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3212805 | PMC |
http://dx.doi.org/10.1186/1477-5956-9-66 | DOI Listing |
Bioresour Technol
January 2025
College of Bioscience and Bioengineering, Institute of Applied Microbiology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China. Electronic address:
Biotechnol Biofuels Bioprod
November 2024
Chair of Microbiology, Technical University of Munich, Emil-Ramann-Str. 4, 85354, Freising, Germany.
Appl Microbiol Biotechnol
November 2024
Department of Animal Science, College of Food Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, 44691, USA.
Mycoscience
May 2024
Department of Bioengineering, Nagaoka University of Technology.
Sake is a Japanese alcoholic beverage produced by fermenting steamed rice and (a culture of on steamed rice) with sake yeast, a strain of Sake yeast strains are important for maintaining product quality and process efficiency. In this study, a strain from Muramatsu Park, Gosen City, Niigata Prefecture was isolated using a loop-mediated isothermal amplification (LAMP) assay. The yeast strain was cultured using the mass spore-cell/cell-cell mating method with a sake yeast haploid.
View Article and Find Full Text PDFFront Bioeng Biotechnol
August 2024
Structural and Functional Biochemistry, Laboratory of Proteomics and Metabolic Engineering of Prokaryotes, Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy.
Since their first industrial application in the acetone-butanol-ethanol (ABE) fermentation in the early 1900s, Clostridia have found large application in biomass biorefining. Overall, their fermentation products include organic acids (e.g.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!