Screening for acetylcholinesterase inhibition and antioxidant activity of selected plants from Croatia.

Nat Prod Res

Faculty of Chemistry and Technology, Department of Biochemistry, University of Split, Teslina 10/V, Split 21000, Croatia.

Published: December 2012

The methanol, ethyl acetate and chloroform extracts of selected Croatian plants were tested for their acetylcholinesterase (AChE) inhibition and antioxidant activity. Assessment of AChE inhibition was carried out using microplate reader at 1 mg mL⁻¹. Antioxidant capacities were determined by 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging test and ferric reducing/antioxidant power assay (FRAP). Total phenol content (TPC) of extracts were determined using Folin-Ciocalteu colorimetric method. Out of 48 extracts, only methanolic extract of the Salix alba L. cortex exerted modest activity towards AChE, reaching 50.80% inhibition at concentration of 1 mg mL⁻¹. All the other samples tested had activity below 20%. The same extract performed the best antioxidative activity using DPPH and FRAP method, too. In essence, among all extracts used in the screening, methanolic extracts showed the best antioxidative activity as well as highest TPC.

Download full-text PDF

Source
http://dx.doi.org/10.1080/14786419.2011.602639DOI Listing

Publication Analysis

Top Keywords

inhibition antioxidant
8
antioxidant activity
8
ache inhibition
8
best antioxidative
8
antioxidative activity
8
activity
6
extracts
5
screening acetylcholinesterase
4
inhibition
4
acetylcholinesterase inhibition
4

Similar Publications

Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by cognitive decline, extracellular amyloid-β (Aβ) plaque accumulation, and intracellular neurofibrillary tangles. Recent efforts to find effective therapies have increased interest in natural compounds with multifaceted effects on AD pathology. This study explores natural compounds for their potential to mitigate AD pathology using molecular docking, ADME screening, and assays, with ruscogenin─a steroidal sapogenin from emerging as a promising candidate.

View Article and Find Full Text PDF

Background: As an opportunistic bacterial pathogen, Klebsiella pneumoniae (KP) is prone to causing a spectrum of diseases in rabbits when their immune system is compromised, which poses a threat to rabbit breeding industry. Bacillus coagulans (BC), recognized as an effective probiotic, confers a variety of benefits including anti-inflammatory and antioxidant properties.

Aim: The purpose of this study was to investigate whether dietary BC can effectively alleviate hepatic injury caused by KP.

View Article and Find Full Text PDF

Protein self-assembly allows for the formation of diverse supramolecular materials from relatively simple building blocks. In this study, a single-component self-assembling hydrogel is developed using the recombinant protein CsgA, and its successful application for spinal cord injury repair is demonstrated. Gelation is achieved by the physical entanglement of CsgA nanofibrils, resulting in a self-supporting hydrogel at low concentrations (≥5 mg mL).

View Article and Find Full Text PDF

The Effects of Polystyrene Microplastics and Copper Ion Co-Contamination on the Growth of Rice Seedlings.

Nanomaterials (Basel)

December 2024

State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Regional Eco-Process and Function Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.

Microplastics (MPs) are emerging pollutants of global concern, while heavy metals such as copper ions (Cu) are longstanding environmental contaminants with well-documented toxicity. This study investigates the independent and combined effects of polystyrene microplastics (PS-MPs) and Cu on the physiological and biochemical responses of rice seedlings ( L.), a key staple crop.

View Article and Find Full Text PDF

Local Administration of (-)-Epigallocatechin-3-Gallate as a Local Anesthetic Agent Inhibits the Excitability of Rat Nociceptive Primary Sensory Neurons.

Cells

January 2025

Laboratory of Food and Physiological Sciences, Department of Life and Food Sciences, School of Life and Environmental Sciences, Azabu University, 1-17-71, Fuchinobe, Chuo-ku, Sagamihara 252-5201, Kanagawa, Japan.

While the impact of (-)-epigallocatechin-3-gallate (EGCG) on modulating nociceptive secondary neuron activity has been documented, it is still unknown how EGCG affects the excitability of nociceptive primary neurons in vivo. The objective of the current study was to investigate whether administering EGCG locally in rats reduces the excitability of nociceptive primary trigeminal ganglion (TG) neurons in response to mechanical stimulation in vivo. In anesthetized rats, TG neuronal extracellular single unit recordings were made in response to both non-noxious and noxious mechanical stimuli.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!