We present quantum chemistry simulations of aluminum clusters surrounded by a surface layer of cyclopentadiene-type ligands to evaluate the potential of such complexes as novel fuels or energetic materials. Density functional theory simulations are used to examine the aluminum-ligand bonding and its variation as the size of the aluminum cluster increases. The organometallic bond at the surface layer arises mainly from ligand charge donation into the Al p orbitals balanced with repulsive polarization effects. Functionalization of the ligand and changes in Al cluster size are found to alter the relative balance of these effects, but the surface organometallic bond generally remains stronger than Al-Al bonds elsewhere in the cluster. In large clusters, such as the experimentally observed Al(50)Cp(12)*, this suggests that unimolecular thermal decomposition likely proceeds through loss of surface AlCp* units, exposing the strained interior aluminum core. The calculated heats of combustion per unit volume for these systems are high, approaching 60% that of pure aluminum. We discuss the possibility of using organometallic aluminum clusters as a means of achieving rapid combustion in propellants and fuels.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp207292t | DOI Listing |
Chem Commun (Camb)
January 2025
Institut für Anorganische Chemie, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, D-72076 Tübingen, Germany.
The homoleptic complex La(InMe) is obtained from the respective aluminium congener La(AlMe) a donor-assisted tetramethylaluminate/tetramethylindate exchange protocol. Compound La(InMe) exhibits interesting thermal lability as well as distinct cluster formation like LaIn(C)(CH)(CH)(CH) and LaIn(CH)(CH) upon addition of an excess of donor or thermal treatment. The neutral potentially tridentate ligand MeTACN (1,4,7-trimethyl-1,4,7-triazacyclononane) is used to investigate donor-triggered intermediates.
View Article and Find Full Text PDFFood Chem
December 2024
Section of Food, Biochemical, Physiological and Nutritional Sciences, Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy.
Grape pomace (GP) is recognized as a valuable source of polyphenols, prompting research into new therapeutic molecules while enhancing this by-product value. To address low stability and bioavailability issues of phenolic compounds, lamellar solids emerge as a promising approach for their loading and stabilization in food, cosmetic, and pharmaceutical applications. A solid phase adsorption procedure was developed here by comparing the properties of eight solids towards GP polyphenols.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Industrial Engineering, Inha University, Incheon, South Korea.
In the contemporary manufacturing landscape, the advent of artificial intelligence and big data analytics has been a game-changer in enhancing product quality. Despite these advancements, their application in diagnosing failure probability and risk remains underexplored. The current practice of failure risk diagnosis is impeded by the manual intervention of managers, leading to varying evaluations for identical products or similar facilities.
View Article and Find Full Text PDFInorg Chem
January 2025
College of Chemistry and Chemical Engineering, Qingdao University, Shandong 266071, P. R. China.
With the development of the nuclear industry, the risk of elements that are difficult to degrade in nuclear fission has been gradually increasing. Therefore, the efficient capture of iodine (I) has attracted considerable attention in recent years. The aluminum cluster-based metal framework materials show great advantage in iodine adsorption due to the designable pore sizes, excellent physicochemical stability, and cheap raw materials.
View Article and Find Full Text PDFEnviron Geochem Health
January 2025
Department of Biochemistry, College of Sciences, King Saud University, 11451, Riyadh, Saudi Arabia.
The effect of open-pit bauxite mining on beach sediment contamination in the urban coastal environment of Kuantan City, Malaysia, was investigated. The contents of 11 heavy metals (Pb, Cd, Al, Mn, Cu, Zn, Fe, As, Ni, Cr, and Ag) in 30 samples from Kuantan beach sediment zones (supratidal, intertidal, and subtidal) were determined using inductively coupled plasma optical emission spectrometry followed by contamination indexes, Pearson's correlation analysis, and principal component analysis (PCA). The results indicated that Cd, As, Ni, and Ag values in beach sediment zones were significantly higher compared to background values.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!