Purpose: To evaluate the effect of a biodegradable microfilm with sustained release of prednisolone acetate (PA) on postoperative wound healing after experimental glaucoma filtration surgery (GFS).

Methods: Biodegradable microfilms composed of poly (D-, L-lactide-co-caprolactone) (PLC) were fabricated and then pre-loaded PA-20% total weight. Fourteen New Zealand White rabbits were randomly divided into 3 treatment groups: GFS alone (n=4), GFS with PLC microfilms (n=4) and GFS with PA-loaded microfilm (n=6). Microfilms were inserted subconjunctivally, adjacent to the filtering surgical site. We monitored all eyes with slit-lamp examination, bleb photography and anterior segment optical coherence tomography (AS-OCT). Histology with immunohistochemistry was performed to determine the presence of any inflammation.

Results: Prednisolone acetate 20%-loaded microfilms exhibited steady, sustained release in vitro. Eyes implanted with PA-loaded microfilms showed a significantly better bleb survival (100% vs. 37.5%, p<0.001) and reduced bleb vascularity (58%; 95% CI 54-62% vs. 30%; 95% CI 23-37%, p=0.001) compared to the control at 30 days postoperatively. Histology and immunohistochemistry demonstrated less T-cell infiltration in the eye implanted with PA-loaded microfilms.

Conclusion: Subconjunctival insertion of a PA-loaded biodegradeable microfilm exhibit sustained release of PA to reduce postoperative inflammation and prolong bleb survival in rabbit GFS.

Download full-text PDF

Source
http://dx.doi.org/10.3109/02713683.2011.627489DOI Listing

Publication Analysis

Top Keywords

sustained release
12
prednisolone acetate
12
glaucoma filtration
8
filtration surgery
8
n=4 gfs
8
microfilms
5
evaluation sustained
4
release plc-loaded
4
plc-loaded prednisolone
4
acetate microfilm
4

Similar Publications

Preparation and characterization of tildipirosin-loaded solid lipid nanoparticles for the treatment of intracellular infections.

Biomater Sci

January 2025

School of Chemistry, Chemical Engineering and Life Science, Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China.

To enhance the antibacterial efficacy of tildipirosin against (S.A.) infections, optimized solid lipid nanoparticles loaded with tildipirosin (SLN-TD) were developed, using docosanoic acid (DA), octadecanoic acid (OA), hexadecanoic acid (HA), and tetradecanoic acid (TA) as lipid components.

View Article and Find Full Text PDF

Aim: Development and optimization of raloxifene hydrochloride loaded lipid nanocapsule hydrogel for transdermal delivery.

Method: A 3 Box-Behnken Design and numerical optimization was performed to obtain the optimized formulation. Subsequently, the optimized raloxifene hydrochloride loaded lipid nanocapsule was developed using phase inversion temperature and characterized for physicochemical properties.

View Article and Find Full Text PDF

Continuous Electrochemical Carbon Capture via Redox-Mediated pH Swing─Experimental Performance and Process Modeling.

J Phys Chem Lett

January 2025

Department of Process Engineering and Technology of Polymer and Carbon Materials, Wroclaw University of Science and Technology, Wyb. St. Wyspiańskiego 27, 50-370 Wrocław, Poland.

We investigate a continuous electrochemical pH-swing method to capture CO from a gas phase. The electrochemical cell consists of a single cation-exchange membrane (CEM) and a recirculation of a mixture of salt and phenazine-based redox-active molecules. In the absorption compartment, this solution is saturated by CO from a mixed gas phase at high pH.

View Article and Find Full Text PDF

Organic compounds present promising options for sustainable zinc battery electrodes. Nevertheless, the electrochemical properties of current organic electrodes still lag behind those of their inorganic counterparts. In this study, nitro groups were incorporated into pyrene-4, 5, 9, 10-tetraone (PTO), resulting in an elevated discharge voltage due to their strong electron-withdrawing capabilities.

View Article and Find Full Text PDF

Pediatric dental health is critically impacted by enamel demineralization and early-stage caries, with remineralization therapies playing a vital role in preventing progression. This systematic review evaluates the effectiveness of various delivery methods for remineralization agents in pediatric patients aged 3-15 years, focusing on varnishes, gels, foams, and sprays. Studies were included if they were randomized controlled trials (RCTs), cohort studies, or case-control studies involving pediatric patients with early-stage caries or enamel demineralization, while studies with non-pediatric populations, unrelated treatments, or significant methodological flaws were excluded.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!