Protein-ligand interactions: thermodynamic effects associated with increasing nonpolar surface area.

J Am Chem Soc

Chemistry and Biochemistry Department, Institute of Cellular and Molecular Biology, The University of Texas, Austin, Texas 78712, USA.

Published: November 2011

Thermodynamic parameters were determined for complex formation between the Grb2 SH2 domain and Ac-pTyr-Xaa-Asn derived tripeptides in which the Xaa residue is an α,α-cycloaliphatic amino acid that varies in ring size from three- to seven-membered. Although the six- and seven-membered ring analogs are approximately equipotent, binding affinities of those having three- to six-membered rings increase incrementally with ring size because increasingly more favorable binding enthalpies dominate increasingly less favorable binding entropies, a finding consistent with an enthalpy-driven hydrophobic effect. Crystallographic analysis reveals that the only significant differences in structures of the complexes are in the number of van der Waals contacts between the domain and the methylene groups in the Xaa residues. There is a positive correlation between buried nonpolar surface area and binding free energy and enthalpy, but not with ΔC(p). Displacing a water molecule from a protein-ligand interface is not necessarily reflected in a favorable change in binding entropy. These findings highlight some of the fallibilities associated with commonly held views of relationships of structure and energetics in protein-ligand interactions and have significant implications for ligand design.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3218293PMC
http://dx.doi.org/10.1021/ja2068752DOI Listing

Publication Analysis

Top Keywords

protein-ligand interactions
8
nonpolar surface
8
surface area
8
ring size
8
increasingly favorable
8
favorable binding
8
binding
5
interactions thermodynamic
4
thermodynamic effects
4
effects associated
4

Similar Publications

Ligand interaction landscape of transcription factors and essential enzymes in E. coli.

Cell

January 2025

Program in Bioinformatics, Boston University, Boston, MA 02215, USA; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Center for Network Systems Biology, Boston University, Boston, MA 02218, USA; Department of Chemistry, Boston University, Boston, MA 02215, USA; Department of Chemical Physiology and Biochemistry, Division of Oncological Sciences, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA. Electronic address:

Knowledge of protein-metabolite interactions can enhance mechanistic understanding and chemical probing of biochemical processes, but the discovery of endogenous ligands remains challenging. Here, we combined rapid affinity purification with precision mass spectrometry and high-resolution molecular docking to precisely map the physical associations of 296 chemically diverse small-molecule metabolite ligands with 69 distinct essential enzymes and 45 transcription factors in the gram-negative bacterium Escherichia coli. We then conducted systematic metabolic pathway integration, pan-microbial evolutionary projections, and independent in-depth biophysical characterization experiments to define the functional significance of ligand interfaces.

View Article and Find Full Text PDF

Ligand-Conditioned Side Chain Packing for Flexible Molecular Docking.

J Chem Theory Comput

January 2025

State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.

Molecular docking is a crucial technique for elucidating protein-ligand interactions. Machine learning-based docking methods offer promising advantages over traditional approaches, with significant potential for further development. However, many current machine learning-based methods face challenges in ensuring the physical plausibility of generated docking poses.

View Article and Find Full Text PDF

Natural Product Identification and Molecular Docking Studies of Leishmania Major Pteridine Reductase Inhibitors.

Pharmaceuticals (Basel)

December 2024

Department of Biomedical Engineering, School of Engineering Sciences, College of Basic & Applied Sciences, University of Ghana, Legon, Accra P.O. Box LG 77, Ghana.

: Pteridine reductase 1 (PTR1) has been one of the prime targets for discovering novel antileishmanial therapeutics in the fight against Leishmaniasis. This enzyme catalyzes the NADPH-dependent reduction of pterins to their tetrahydro forms. While chemotherapy remains the primary treatment, its effectiveness is constrained by drug resistance, unfavorable side effects, and substantial associated costs.

View Article and Find Full Text PDF

The COVID-19 pandemic has caused over 7 million deaths globally in the past four years. spp. (Siparunaceae), which is used in Brazilian folk medicine, is considered a genus with potential antiviral alternatives.

View Article and Find Full Text PDF

Dissecting the Binding Affinity of Anti-SARS-CoV-2 Compounds to Human Transmembrane Protease, Serine 2: A Computational Study.

Int J Mol Sci

January 2025

State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan and School of Life Sciences, Yunnan University, Kunming 650091, China.

The human transmembrane protease, serine 2 (TMPRSS2), essential for SARS-CoV-2 entry, is a key antiviral target. Here, we computationally profiled the TMPRSS2-binding affinities of 15 antiviral compounds. Molecular dynamics (MD) simulations for the docked complexes revealed that three compounds exited the substrate-binding cavity (SBC), suggesting noncompetitive inhibition.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!