We previously reported that reconstituted nucleosomes undergo sequence-dependent translational repositioning upon removal of the core histone tail domains under physiological conditions, indicating that the tails influence the choice of position. We report here that removal of the core histone tail domains increases the exposure of the DNA backbone in nucleosomes to hydroxyl radicals, a nonbiased chemical cleavage reagent, indicative of an increase in the motility of the DNA on the histone surface. Moreover, we demonstrate that the divalent cations Mg(2+) and Ca(2+) can replace the role of the tail domains with regard to stabilization of histone-DNA interactions within the nucleosome core and restrict repositioning of nucleosomes upon tail removal. However, when nucleosomes were incubated with Mg(2+) after tail removal, the original distribution of translational positions was not re-established, indicating that divalent cations increase the energy barrier between translational positions rather than altering the free energy differences between positions. Interestingly, other divalent cations such as Zn(2+), Fe(2+), Co(2+), and Mn(2+) had little or no effect on the stability of histone-DNA interactions within tailless nucleosomes. These results support the idea that specific binding sites for Mg(2+) and Ca(2+) ions exist within the nucleosome and play a critical role in nucleosome stability that is partially redundant with the core histone tail domains.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3261621PMC
http://dx.doi.org/10.1021/bi201377xDOI Listing

Publication Analysis

Top Keywords

tail domains
20
divalent cations
16
core histone
16
histone tail
16
histone-dna interactions
12
partially redundant
8
redundant core
8
removal core
8
mg2+ ca2+
8
tail removal
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!