Three pyrene-degrading bacterial strains named D44, D82S and D82Q were isolated from PAHs-contaminated soil in Shenfu Irrigation Area of Shenyang, Northeast China. The strains were identified as Gordonia sp., based on the morphological observation, physiological and biochemical identification, and phylogenetical analysis of 16S rDNA sequences. For all the three stains, their optimal pH was 7, and their growth was obviously inhibited when the pH was lower than 5 or higher than 9. The three strains were capable of utilizing pyrene, benzo[a] pyrene, anthracene, naphthalene, phenanthrene, and fluoranthene as the sole source of carbon and energy. After seven days incubation, the three strains could degrade more than 65% of pyrene with an initial concentration 100 mg x L(-1), and the D44, D82S, and D82Q could degrade 79.6%, 91.3%, and 62.8% of benzo[a] pyrene with an initial concentration 50 mg x L(-1), respectively. PCR amplification indicated that the strains D82Q and D82S possessed alkane monooxygenase gene alkB.
Download full-text PDF |
Source |
---|
Biodegradation
August 2024
Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, College of Geographical Science, Fujian Normal University, Fuzhou, 350007, Fujian, China.
Considerable efforts that isolate and characterize degrading bacteria for polycyclic aromatic hydrocarbons (PAHs) have focused on contaminated environments so far. Here we isolated three distinctive pyrene (PYR)-degrading bacteria from a paddy soil that was not contaminated with PAHs. These included a novel Bacillus sp.
View Article and Find Full Text PDFEnviron Res
October 2023
Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan, NSW, 2308, Australia. Electronic address:
Our current understanding of the susceptibility of hazardous polycyclic aromatic hydrocarbons (PAHs) to anaerobic microbial degradation is very limited. In the present study, we obtained phenanthrene- and pyrene-degrading strictly anaerobic sulfate-reducing enrichments using contaminated freshwater lake sediments as the source material. The highly enriched phenanthrene-degrading culture, MMKS23, was dominated (98%) by a sulfate-reducing bacterium belonging to the genus Desulfovibrio.
View Article and Find Full Text PDFMicrob Ecol
July 2023
Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, The University of Newcastle, ATC Building, University Drive, Callaghan, NSW, 2308, Australia.
Biodegradation of polycyclic aromatic hydrocarbons (PAHs) under completely anaerobic sulfate-reducing conditions is an energetically challenging process. To date, anaerobic degradations of only two-ringed naphthalene and three-ringed phenanthrene by sediment-free and enriched sulfate-reducing bacteria have been reported. In this study, sulfate-reducing enrichment cultures capable of degrading naphthalene and four-ringed PAH, pyrene, were enriched from a contaminated former gas plant site soil.
View Article and Find Full Text PDFArch Microbiol
April 2022
Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia.
Polycyclic aromatic hydrocarbons (PAHs) are the hazardous xenobiotic agents of oil production. One of the methods to eliminate hazardous compounds is bioremediation, which is the most efficient and cost-effective method to eliminate the harmful byproducts of crude petroleum processing. In this study, five pure bacterial isolates were isolated from petroleum-contaminated soil, four of which showed a robust growth on the PAH pyrene, as a sole carbon source.
View Article and Find Full Text PDFEnviron Monit Assess
March 2021
Laboratory of Molecular Biology, Programa de Pós-Graduação em Biologia, Universidade do Vale do Rio dos Sinos (UNISINOS), Av. Unisinos 950, São Leopoldo, RS, 93022-750, Brazil.
The prospection of bacteria that are resistant to polyaromatic hydrocarbons (PAH) of activated sludge from a Petrochemical Wastewater Treatment Plant (WWTP) allows investigating potential biodegraders of PAH. For this purpose, sludge samples were cultured with benzo(a)pyrene and/or naphthalene as carbon sources. The recovered isolates were characterized by biochemical methods and identified based on the analysis of the sequence of three genes: 16S, recA and gyrB.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!