[Diurnal variation of gas exchange and chlorophyll fluorescence parameters of cotton functional leaves under effects of soil salinity].

Ying Yong Sheng Tai Xue Bao

Ministry of Agriculture Key Laboratory of Crop Physiology and Ecology in Southern China, Nanjing Agricultural University, Nanjing 210095, China.

Published: July 2011

A two-year (2007-2008) pot experiment with cotton varieties Sumian 12 (salinity-sensitive) and Zhongmiansuo 44 (salinity-tolerance) was conducted at the Pailou experimental station of Nanjing Agricultural University to study the diurnal variation of the gas exchange and chlorophyll fluorescence parameters of cotton functional leaves under five levels (0, 0.35%, 0.60% , 0.85%, and 1.00%) of soil salinity. With the increase of soil salinity, the concentrations of Na+, Cl-, and Mg2+ in functional leaves increased, whereas the concentrations of K+ and Ca2+ decreased. The salinity level <0. 35% had little effects on the gas exchange and chlorophyll fluorescence parameters, but that >0.35% depressed the net photosynthetic rate (Pn) dramatically. At the salinity level >0.35%, the sensitivity of functional leaves to daytime photon flux density (PFD) and air temperature (Ta) enhanced, which in turn resulted in more severe photo- and temperature inhibition, and changed the diurnal variation patterns of Pn and stomatal conductance (Gs) from a one-peak curve to a constantly decreasing one. Along with the variations of daytime PED and Ta, the diurnal variation patterns of the maximum photochemical efficiency (F(v)/F(m)), quantum yield of electron transport (phi(PS II), and photochemical quenching coefficient (q(P)) of functional leaves presented a V-shaped curve, with the minimum value appeared at 12:00-13:00, while the non-photochemical quenching coefficient (q(N)) showed a single-peak curve. Soil salinity decreased the F(v)/F(m), phi(PS II), and q(P) significantly, but increased the q(N) and enlarged its change trend. The comparatively low concentrations of Na+ and Cl- and the relatively high concentrations of K+ and Ca2+ in salt-tolerant Zhongmiansuo 44 functional leaves benefited the relative stability of PS II, and the maintenance of a relatively high thermal dissipation capacity could be one of the reasons for a high level of Pn at high salinity level.

Download full-text PDF

Source

Publication Analysis

Top Keywords

functional leaves
24
diurnal variation
12
soil salinity
12
salinity level
12
variation gas
8
gas exchange
8
exchange chlorophyll
8
chlorophyll fluorescence
8
fluorescence parameters
8
parameters cotton
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!