[Spatiotemporal changes of potential evapotranspiration in Songnen Plain of Northeast China].

Ying Yong Sheng Tai Xue Bao

State Key Laboratory of Forest and Soil Ecology, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110164, China.

Published: July 2011

Based on the daily meteorological data from 72 weather stations from 1961-2003, a quantitative analysis was conducted on the spatiotemporal changes of the potential evapotranspiration in the Plain. The Penman-Monteith model was applied to calculate the potential evapotranspiration; the Mann-Kendall test, accumulative departure curve, and climatic change rate were adopted to analyze the change trend of the evapotranspiration; and the spatial analysis function of ArcGIS was used to detect the spatial distribution of the evapotranspiration. In 1961-2003, the mean annual potential evapotranspiration in the Plain was 330 - 860 mm, and presented an overall decreasing trend, with the high value appeared in southwest region, low value in surrounding areas of southwest region, and a ring-belt increasing southwestward. The climatic change rate of the annual potential evapotranspiration was -0.21 mm x a(-1). The annual potential evapotranspiration was the highest in 1982, the lowest in 1995, and increased thereafter. Seasonally, the climatic change rate of the potential evapotranspiration in spring, summer, autumn, and winter was -0.19, 0.01, -0.05, and 0.03 mm x a(-1), respectively, suggesting that the potential evapotranspiration had a weak increase in winter and summer and a slight decrease in spring and autumn.

Download full-text PDF

Source

Publication Analysis

Top Keywords

potential evapotranspiration
32
climatic change
12
change rate
12
annual potential
12
evapotranspiration
10
potential
8
changes potential
8
evapotranspiration plain
8
southwest region
8
[spatiotemporal changes
4

Similar Publications

A Crop Water Stress Index for Hazelnuts Using Low-Cost Infrared Thermometers.

Sensors (Basel)

December 2024

North Willamette Research and Extension Center, Oregon State University, Aurora, OR 97002, USA.

Incorporating data-driven technologies into agriculture presents a promising approach to optimizing crop production, especially in regions dependent on irrigation, where escalating heat waves and droughts driven by climate change pose increasing challenges. Recent advancements in sensor technology have introduced diverse methods for assessing irrigation needs, including meteorological sensors for calculating reference evapotranspiration, belowground sensors for measuring plant available water, and plant sensors for direct water status measurements. Among these, infrared thermometry stands out as a non-destructive remote sensing method for monitoring transpiration, with significant potential for integration into drone- or satellite-based models.

View Article and Find Full Text PDF

Primary roles of soil evaporation and vegetation in driving terrestrial evapotranspiration across global drylands.

Sci Total Environ

December 2024

College of Water Resources and Architecture Engineering, Northwest A&F University, Yangling 712100, Shanxi Province, China.

Terrestrial evapotranspiration (ET) is a key variable in the global water cycle, notably affected by climate change and vegetation greening. However, its intrinsic driving modes and the ways through which driving factors influence it remain largely unexplored. Here, we quantified the internal and external drivers behind the spatiotemporal variability of ET across global drylands at seasonal and annual temporal scales and component levels based on pixel-by-pixel partial correlation and ridge regression analyses.

View Article and Find Full Text PDF

Introduction: It is desirable to rehabilitate desert ecosystems with a selection of native plant species that render ecosystem services and yield natural products for creating a high-value industry, e.g., pharmaceuticals or cosmetics.

View Article and Find Full Text PDF
Article Synopsis
  • Dubiaranea magatama is a newly described spider species found in Uruguay and southern Brazil, identified based on male and female specimens from native forests.
  • The potential distribution for this species is modeled to primarily encompass the Pampean province and southern Atlantic Forest biome, influenced positively by factors like spatial location, proximity to large rivers, and tree cover.
  • The researchers also updated records for Dubiaranea difficilis in Uruguay, creating a distribution model that indicates similar environmental influences, thus broadening its previously suggested distribution area.
View Article and Find Full Text PDF

The study of spatiotemporal variation and driving forces of the normalized difference vegetation index (NDVI) is conducive to regional ecosystem protection and natural resource management. Based on the 1982-2022 GIMMS NDVI data and 26 influencing variables, by using the Theil-Sen median slope analysis, Mann-Kendall (M - K) test method and GeoDetector model, we analyzed the spatial and temporal characteristics of vegetation cover and the driving factors of its spatial differentiation in the northern foothills of the Yinshan Mountains in Inner Mongolia. The NDVI showed a significantly increasing trend during 1982-2022, with a growth rate of 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!