A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

[Identification of soil-borne fungi using Fourier transform infrared spectroscopy]. | LitMetric

[Identification of soil-borne fungi using Fourier transform infrared spectroscopy].

Guang Pu Xue Yu Guang Pu Fen Xi

Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.

Published: August 2011

Fourier transform infrared (FTIR) attenuated total reflectance (ATR) spectroscopy was used in combination with multivariate statistic analysis for identification of soil-borne fungi that causes severe economic damage to agriculture: Fusarium monili forme, Fusarium semitectum, Fusarium oxysporum, Fusarium solani, Rhizoctonia solani, Sclerotinia sclerotiorum, Pythium aphanidermatum and Phytophthora capsici. The original FTIR spectra were normalized, and the second derivatives were calculated, from which the peak wave numbers showing greatest variability were selected: 2924, 2854, 1745, 1641, 1547, 1466, 1406, 1376, 1306, 1240, 1201, 1152, 1109 and 1028 cm(-1). To discriminate different fungal strains, canonical discriminant analysis and cluster analysis were performed at these characteristic wave numbers. Results showed that the classification accuracies achieved 100% for different species of fungi, and classification accuracies for different fusarium strains achieved 95.56%, demonstrating the high potential of this technique for fungi identification.

Download full-text PDF

Source

Publication Analysis

Top Keywords

soil-borne fungi
8
fourier transform
8
transform infrared
8
wave numbers
8
classification accuracies
8
fusarium
5
[identification soil-borne
4
fungi
4
fungi fourier
4
infrared spectroscopy]
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!