In vivo disintegration of four different luting agents.

Int J Dent

Department of Prosthetic Dentistry, School of Dentistry, Marmara University, 34726 Istanbul, Turkey.

Published: November 2011

The purpose of this study was to evaluate the disintegration of luting agents. An intraoral sample holder was made having four holes of 1.4 mm diameter and 2 mm depth. The holder was soldered onto the buccal surface of an orthodontic band, which was cemented to the first upper molar in 12 patients, average age 26 years. The holes were filled with a zinc phosphate (Phosphate Kulzer), a glass ionomer (Ketac Cem), a resin-modified-glass ionomer (Fuji Plus), and a resin cement (Calibra). Impressions were made at baseline, and 6, 12, and 18 months from which epoxy replicas were made, which were scanned with an optical scanner. Total volume loss was calculated. The rank order of mean volume loss was as follows: Phosphate cement > Ketac Cem = Fuji Plus = Calibra. Cement type and time had statistically significant effects on volume loss of cements (P < 0.001). Under in vivo conditions, zinc phosphate cement disintegrated the most, whereas no significant difference was observed for glass ionomer and resin-based cements. As intraoral conditions are considerably less aggressive than experimental laboratory conditions, the erosion behavior of glass ionomer cement was found to be similar to the resin-based cements in contradiction to previous laboratory results.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3189560PMC
http://dx.doi.org/10.1155/2012/831508DOI Listing

Publication Analysis

Top Keywords

glass ionomer
12
volume loss
12
disintegration luting
8
luting agents
8
zinc phosphate
8
ketac cem
8
phosphate cement
8
resin-based cements
8
cement
5
vivo disintegration
4

Similar Publications

Objective: To investigate the effect of cervical margin relocation with four different injectable restorative materials on the fracture resistance of molars receiving mesio-occluso-distal CAD/CAM nanoceramic onlay restorations.

Materials And Methods: One hundred and five sound mandibular molars received a standardized mesio-occluso-distal onlay preparation, with cervical margins located 2 mm apical to the cemento-enamel junction. The molars were randomly allocated into five groups (n = 21) according to the cervical relocating materials used: Group I had no cervical margin relocation; Group II used a highly viscous glass ionomer; Group III used a highly-filled injectable resin composite; Group IV used a resin-modified glass ionomer; and Group V used a bioactive ionic resin.

View Article and Find Full Text PDF

Mechanical behavior of external root resorption cavities restored with different materials: a 3D-FEA study.

BMC Oral Health

January 2025

Faculty of Dentistry, Department of Endodontics, Ondokuz Mayis University, Samsun, Kurupelit, 55139, Turkey.

Background: The aim was to evaluate the stresses in teeth, with external root resorption (ERR) restored with different materials using finite element analysis (FEA).

Methods: In this study, a Micro-CT scan was conducted on a prepared maxillary central tooth. DICOM-compatible images obtained from the sections were converted into stereolithography format using Ctan software.

View Article and Find Full Text PDF

A comparative study of polydopamine vs. glass ionomer cement for adhesion mechanisms on enamel and dentin using SEM and shear bond strength evaluation.

Sci Rep

January 2025

Department of Conservative Dentistry and Endodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, 600077, India.

Polydopamine (PD), inspired by the wet adhesion mechanism of mussel foot proteins, has emerged as a promising adhesive material with wide-ranging applications. This study aimed to compare the adhesive properties of PD and Glass Ionomer Cement (GIC) on enamel and dentin substrates, evaluating PD's potential as an alternative adhesive in dental practice. A total of 120 human premolars were prepared, with 80 teeth allocated for Scanning Electron Microscopy (SEM) analysis and 40 teeth reserved for shear bond strength testing.

View Article and Find Full Text PDF

Aim: This prospective clinical study aimed to clinically investigate the efficiency of (GIC) glass-ionomer cement application (Ionostar Plus + Easy Glaze, VOCO) in reducing hypersensitivity in permanent molars affected by molar incisor hypomineralisation when assessed immediately (15 min) and 12 weeks after its application.

Materials And Methods: Children with at least one hypersensitive MIH-affected permanent molar (MIH-TNI-3 or 4). The pre-treatment status was evaluated and only included if they did not receive a tooth-specific in-office desensitizing treatment within one month.

View Article and Find Full Text PDF

Objective This in vitro study evaluated the impact of different time intervals on the color stability of glass ionomer cement (GIC) and composite materials bonded to teeth treated with silver diamine fluoride (SDF). Specifically, the study sought to determine if immediate or delayed application of these restorative materials affects the degree of staining caused by SDF. Materials and methods Twenty-eight extracted primary molars with cavitated lesions were randomly divided into four groups, each comprising seven samples.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!