Spatial constraints dictate glial territories at murine neuromuscular junctions.

J Cell Biol

Center for Integrated Protein Science Munich at the Institute of Neuroscience, Technische Universität München, 80802 Munich, Germany.

Published: October 2011

Schwann cells (SCs), the glial cells of the peripheral nervous system, cover synaptic terminals, allowing them to monitor and modulate neurotransmission. Disruption of glial coverage leads to axon degeneration and synapse loss. The cellular mechanisms that establish and maintain this coverage remain largely unknown. To address this, we labeled single SCs and performed time-lapse imaging experiments. Adult terminal SCs are arranged in static tile patterns, whereas young SCs dynamically intermingle. The mechanism of developmental glial segregation appears to be spatial competition, in which glial-glial and axonal-glial contacts constrain the territory of single SCs, as shown by four types of experiments: (1) laser ablation of single SCs, which led to immediate territory expansion of neighboring SCs; (2) axon removal by transection, resulting in adult SCs intermingling dynamically; (3) axotomy in mutant mice with blocked axon fragmentation in which intermingling was delayed; and (4) activity blockade, which had no immediate effects. In summary, we conclude that glial cells partition synapses by competing for perisynaptic space.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3198169PMC
http://dx.doi.org/10.1083/jcb.201108005DOI Listing

Publication Analysis

Top Keywords

single scs
12
scs
8
glial cells
8
glial
5
spatial constraints
4
constraints dictate
4
dictate glial
4
glial territories
4
territories murine
4
murine neuromuscular
4

Similar Publications

Enhancer-driven Shh signaling promotes glia-to-mesenchyme transition during bone repair.

Bone Res

January 2025

Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, Jiangsu Province, China.

Plp1-lineage Schwann cells (SCs) of peripheral nerve play a critical role in vascular remodeling and osteogenic differentiation during the early stage of bone healing, and the abnormal plasticity of SCs would jeopardize the bone regeneration. However, how Plp1-lineage cells respond to injury and initiate the vascularized osteogenesis remains incompletely understood. Here, by employing single-cell transcriptional profiling combined with lineage-specific tracing models, we uncover that Plp1-lineage cells undergoing injury-induced glia-to-MSCs transition contributed to osteogenesis and revascularization in the initial stage of bone injury.

View Article and Find Full Text PDF

Homologous metal-organic complexes reconstructed oxy-hydroxide heterostructures as efficient oxygen evolution electrocatalysts.

J Colloid Interface Sci

January 2025

Key Laboratory of Eco-chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042 China. Electronic address:

It is imperative to investigate more cost-effective, long-lasting, efficient, and reliable non-noble metal electrocatalysts for the oxygen evolution reaction (OER) in hydrogen production via water splitting. Metal-organic complexes have been extensively researched and utilized for this purpose, yet their transformation in this process remains intriguing and underexplored. To enable a comprehensive comparison, we synthesized three types of metal-organic complexes with varying morphologies using the same raw material.

View Article and Find Full Text PDF

Background: Kidney transplantation (KT) is the most effective treatment for end-stage renal disease. End-ischemic hypothermic machine perfusion (EI-HMP) has emerged as a promising method for preserving grafts before transplantation. This study aimed to compare graft function recovery in KT recipients of deceased brain-death (DBD) grafts preserved with EI-HMP versus static cold storage (SCS).

View Article and Find Full Text PDF

Effects of Spinal Cord Stimulation in Patients with Small Fiber and Associated Comorbidities from Neuropathy After Multiple Etiologies.

J Clin Med

January 2025

Research Group in Social and Nutritional Epidemiology, Pharmacoepidemiology and Public Health, Department of Preventive Medicine and Public Health, Food Sciences, Toxicology and Forensic Medicine, Faculty of Pharmacy, Universitat de València, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Spain.

The aim of this study was to evaluate the effects of spinal cord stimulation (SCS) on pain, neuropathic symptoms, and other health-related metrics in patients with chronic painful peripheral neuropathy (PN) from multiple etiologies. A prospective single center observational longitudinal cohort study assessed SCS efficacy from April 2023 to May 2024, with follow-ups at 2, 4, 6, and 12 months in 19 patients suffering from the painful polyneuropathy of diverse etiologies: diabetic (DPN), idiopathic (CIAP), chemotherapy-induced (CIPN), and others. Patients were implanted with a neurostimulator (WaveWriter Alpha, Boston Scientific Corporation, Valencia, CA, USA) and percutaneous leads targeting the lower limbs (T10-T11) and, if necessary, the upper limbs (C4-C7).

View Article and Find Full Text PDF

Transcriptional Profiling of Testis Development in Pre-Sexually-Mature Hezuo Pig.

Curr Issues Mol Biol

December 2024

College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.

Spermatogenesis is an advanced biological process, relying on intricate interactions between somatic and germ cells in testes. Investigating various cell types is challenging because of cellular heterogeneity. Single-cell RNA sequencing (scRNA-seq) offers a method to analyze cellular heterogeneity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!