We present here the syntheses of a mononuclear Cu(II) complex and two polynuclear Cu(II)-Ni(II) complexes of the azenyl ligand, 4-(pyridin-2-ylazenyl)resorcinol (HL; 1). The reaction of HL (1) and copper(II) perchlorate with KCN gave a mononuclear complex [CuL(CN)] (4). Using 4, one pentanuclear complex, [{CuL(NC)}(4) Ni](ClO(4))(2) (5) and one trinuclear complex, [{CuL(CN)}(2) NiL]ClO(4) (6), were prepared and characterized by elemental analyses, magnetic susceptibility, molar conductance, IR, and thermal analysis. Stoichiometric and spectral results of the mononuclear Cu(II) complex indicated that the metal/ligand/CN ratio was 1 : 1 : 1, and the ligand behaved as a tridentate ligand forming neutral metal chelates through the pyridinyl and azenyl N-, and resorcinol O-atom. The interaction between the compounds (the ligand 1, its Ni(II) and Cu(II) complexes without CN, i.e., 2 and 3, and its complexes with CN, 4-6) and DNA has also been investigated by agarose gel electrophoresis. The pentanuclear Cu(4) Ni complex (5) with H(2) O(2) as a co-oxidant exhibited the strongest DNA-cleaving activity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cbdv.201000209 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!