Silicon compounds are known as bioactive materials that are able to bond to the living bone tissue by inducing an osteogenic response through the stimulation and activation of osteoblasts. To improve the bioactive and mechanical properties of an α-Ca(3)PO(4)-based cement, the effects of the addition of Ca(3 SiO(5) (C(3)S) on physical, chemical, mechanical, and biological properties after soaking in simulated body fluid (SBF) were studied. The morphological and structural changes of the material during immersion were analyzed by X-ray diffraction and scanning electron microscopy. The results showed that it is possible to increase the compressive strength of the cement by adding 5% of C(3)S. Higher C(3)S contents enhance bioactivity and biocompatibility by the formation of a dense and homogeneous hydroxyapatite layer within 7 days; however, compressive strength decreases drastically as a consequence of delayed hydrolysis of α-Ca(3)(PO(4) (2). An increment in setting times and degradation rate of composites containing C(3)S was also observed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jbm.b.31926 | DOI Listing |
J Contemp Dent Pract
September 2024
Department of Prosthodontics, Bharati Vidyapeeth (Deemed to be University) Dental College and Hospital, Sangli, Maharashtra, India, ORCID: https://orcid.org/0000-0002-6661-0931.
Aim: The aim of this systematic review was to evaluate the effect of build orientation on the mechanical and physical properties of additively manufactured resin using digital light processing (DLP).
Background: The properties of 3D-printed materials are influenced by various factors, including the type of additive manufacturing (AM) system and build orientation. There is a scarcity of literature on the effect of build orientation on the mechanical and physical properties of additively manufactured resins using DLP technology in dentistry.
Sci Rep
January 2025
School of Civil Engineering, Vellore Institute of Technology, Chennai, Tamil Nadu, 600127, India.
The carbon footprint associated with cement production, coupled with depletion of natural resources and climate change, underscores the need for sustainable alternatives. This study explores the effect of metakaolin (MK) and nano-silica (NS) on concrete's engineering performance and environmental impact. Initially, compressive, tensile, and flexural strength tests, along with durability assessments like water absorption, sorptivity, rapid chloride permeability, and resistance to acid and sulphate attacks, were conducted.
View Article and Find Full Text PDFSci Rep
January 2025
LECIV - Civil Engineering Laboratory, UENF - State University of the North in Rio de Janeiro, Av. Alberto Lamego, 2000, Campos dos Goytacazes, Rio de Janeiro, 28013-602, RJ, Brazil.
The correct choice of a stone aggregate for railway ballast is directly related to the stability, safety, efficiency, and maintenance costs of the track. The aggregate must meet several criteria to ensure it is the most appropriate material. Thus, the present study aimed to evaluate four distinct stones: two granites, a diabase, and a basalt, all mined in the eastern region of the state of São Paulo, Brazil, regarding their applicability as ballast.
View Article and Find Full Text PDFSci Rep
January 2025
Biomedical Engineering Department, Faculty of Engineering, Helwan University, Cairo, Egypt.
Car accidents, infections caused by bacteria or viruses, metastatic lesions, tumors, and malignancies are the most frequent causes of chest wall damage, leading to the removal of the affected area. After excision, artificial bone or synthetic materials are used in chest wall reconstruction to restore the skeletal structure of the chest. Chest implants have traditionally been made from metallic materials like titanium alloys due to their biocompatibility and durability.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Mechanical Engineering, Tianjin University of Commerce, Tianjin 300134, PR China. Electronic address:
To this day, energy conservation, emission reduction, and environmental protection continue to be goals pursued by humanity. Passive radiation cooling, as a zero-consumption refrigeration technology, offers substantial opportunities for reducing global energy consumption and carbon dioxide emissions. It is of great significance to develop high-performance passive radiation cooling materials from sustainable materials.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!