Bioelectrochemical stimulation of petroleum hydrocarbon degradation in saline soil using U-tube microbial fuel cells.

Biotechnol Bioeng

MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, No. 94 Weijin Road, Nankai District, Tianjin 300071, China.

Published: February 2012

Bioremediation is a cost-effective and eco-friendly approach to decontaminate soils polluted by petroleum hydrocarbons. However, this technique usually requires a long time due to the slow degradation rate by bacteria. By applying U-tube microbial fuel cells (MFCs) designed here, the degradation rate of petroleum hydrocarbons close to the anode (<1 cm) was enhanced by 120% from 6.9 ± 2.5% to 15.2 ± 0.6% with simultaneous 125 ± 7 C of charge output (0.85 ± 0.05 mW/m(2) , 1 kΩ) in the tested period (25 days). Hydrocarbon fingerprint analysis showed that the degradation rate of both alkanes and polycyclic aromatic hydrocarbons (PAHs) was accelerated. The decrease of initial water content from 33% to 28% and 23% resulted in a decrease on charge output and hydrocarbon degradation rate, which could be attributed to the increase of internal resistance. A salt accumulation was observed in each reactor due to the evaporation of water from the air-cathode, possibly inhibited the activity of exoelectrogenic bacteria (EB) and resulted in the elimination of the current at the end of the tested period. The number of hydrocarbon degradation bacteria (HDB) in soil close to the anode increased by nearly two orders of magnitude in the MFC assisted system (373 ± 56 × 10(3)  CFU/g-soil) than that in the disconnected control (8 ± 2 × 10(3)  CFU/g-soil), providing a solid evidence for in situ biostimulation of HDB growth by colonization of EB in the same system.

Download full-text PDF

Source
http://dx.doi.org/10.1002/bit.23351DOI Listing

Publication Analysis

Top Keywords

u-tube microbial
8
microbial fuel
8
fuel cells
8
petroleum hydrocarbons
8
degradation rate
8
bioelectrochemical stimulation
4
stimulation petroleum
4
petroleum hydrocarbon
4
hydrocarbon degradation
4
degradation saline
4

Similar Publications

Global warming and urbanization together with development of subsurface infrastructures (e.g. subways, shopping complexes, sewage systems, and Ground Source Heat Pump (GSHP) systems) will likely cause a rapid increase in the temperature of relatively shallow groundwater reservoirs (subsurface thermal pollution).

View Article and Find Full Text PDF

Subsurface microorganisms may respond to increased CO2 levels in ways that significantly affect pore fluid chemistry. Changes in CO2 concentration or speciation may result from the injection of supercritical CO2 (scCO2) into deep aquifers. Therefore, understanding subsurface microbial responses to scCO2, or unnaturally high levels of dissolved CO2, will help to evaluate the use of geosequestration to reduce atmospheric CO2 emissions.

View Article and Find Full Text PDF

In a microbial fuel cell (MFC), exoelectrogens, which transfer electrons to the electrode, have been regarded as a key factor for electricity generation. In this study, U-tube MFC and plating methods were used to isolate exoelectrogens from the anode of an MFC. Disparate microorganisms were identified depending on isolation methods, despite the use of an identical source.

View Article and Find Full Text PDF

Bioelectrochemical stimulation of petroleum hydrocarbon degradation in saline soil using U-tube microbial fuel cells.

Biotechnol Bioeng

February 2012

MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, No. 94 Weijin Road, Nankai District, Tianjin 300071, China.

Bioremediation is a cost-effective and eco-friendly approach to decontaminate soils polluted by petroleum hydrocarbons. However, this technique usually requires a long time due to the slow degradation rate by bacteria. By applying U-tube microbial fuel cells (MFCs) designed here, the degradation rate of petroleum hydrocarbons close to the anode (<1 cm) was enhanced by 120% from 6.

View Article and Find Full Text PDF

Little is known about hydrogeochemical conditions beneath thick permafrost, particularly in fractured crystalline rock, due to difficulty in accessing this environment. The purpose of this investigation was to develop methods to obtain physical, chemical, and microbial information about the subpermafrost environment from a surface-drilled borehole. Using a U-tube, gas and water samples were collected, along with temperature, pressure, and hydraulic conductivity measurements, 420 m below ground surface, within a 535 m long, angled borehole at High Lake, Nunavut, Canada, in an area with 460-m-thick permafrost.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!