Background And Objectives: Targeting the ubiquitin-proteasome system by using proteasome inhibitors represents a novel approach for cancer therapy. Anaplastic thyroid cancer (ATC), a subtype of thyroid cancer (TC), fails to respond to conventional TC treatment. Here we investigated the effects of bortezomib on TC in vitro. Further, the study aimed to evaluate its potential for TC treatment in vivo.
Methods: Three anaplastic (Hth74, C643, Kat4), one follicular (FTC133), and one papillary (TPC1) TC cell lines were used. Antiproliferative, proapoptotic, and transcriptional effects of bortezomib treatment were analyzed in vitro and growth inhibition of ATC xenografts in vivo. Tumor samples were analyzed by Ki67, CD31, caspase-3, and NF-κB immunohistochemistry.
Results: In vitro, bortezomib inhibited proliferation of TC cells (IC(50) 4-10 nM), increased caspase-3 activity and induced cell cycle arrest. NF-κB activity was affected differently. In vivo, bortezomib treatment was effective in reducing tumor volume (up to 74%), accompanied by reduced proliferation (Ki67) and 57% reduced tumor vascularity.
Conclusion: Proteasome inhibition is effective in reducing cell growth and inducing apoptosis of ATC in vitro and inhibiting tumor growth and vascularity in vivo. However, the impact on nuclear transcription remains controversial. Clinical evaluation of bortezomib treatment in ATC is warranted.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jso.22113 | DOI Listing |
BMC Cancer
January 2025
Department of Radiation Oncology, First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming, 650032, P. R. China.
Introduction: The core objective of this study was to precisely locate metastatic lymph nodes, identify potential areas in nasopharyngeal carcinoma patients that may not require radiotherapy, and propose a hypothesis for reduced target volume radiotherapy on the basis of these findings. Ultimately, we reassessed the differences in dosimetry of organs at risk (OARs) between reduced target volume (reduced CTV2) radiotherapy and standard radiotherapy.
Methods And Materials: A total of 209 patients participated in the study.
Sci Rep
January 2025
Department of Thyroid and Breast Surgery, Liaoning Provincial People's Hospital, People's Hospital of China Medical University), Shenyang, China.
This study aimed to explore the diagnostic value of the two cytology techniques, including liquid-based cytology of mammary ductal lavage fluid and nipple discharge smear cytology, in the intraductal lesions in patients with pathological nipple discharge (PND). This retrospective analysis included 119 patients with PND who underwent surgical treatment. At the same time, they all underwent fiberoptic ductoscopy (FDS), nipple discharge smear cytology and liquid-based cytology of ductal lavage fluid before surgery.
View Article and Find Full Text PDFAutoimmunity
December 2025
Department of Thyroid Head and Neck Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China.
Background: Exosomes derived from cancer-associated fibroblasts (CAFs) can affect tumor microenvironment (TME) of thyroid cancer (TC). The cAMP response element binding protein 1 (CREB1) acts as a transcription factor to participate in cancer development. Currently, we aimed to explore the molecular mechanism of exosome-associated CREB1 and C-C motif chemokine ligand 20 (CCL20) in TC.
View Article and Find Full Text PDFZhonghua Nei Ke Za Zhi
February 2025
Department of Ultrasound Medicine, China-Japan Friendship Hospital, Beijing100029, China Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing100730, China National Respiratory Medicine Center, National Key Laboratory of Respiratory and Comorbidity, National Respiratory Medical Center National Clinical Research Center, Respiratory Diseases Respiratory Research Institute of Chinese Academy of Medical Sciences, Respiratory Center of China-Japan Friendship Hospital, Beijing100029, China.
Zhonghua Bing Li Xue Za Zhi
February 2025
Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!