Tailoring the density of random single-walled carbon nanotube (SWCNT) networks is of paramount importance for various applications, yet it remains a major challenge due to the insufficient catalyst activation in most growth processes. Here we report on a simple and effective method to maximise the number of active catalyst nanoparticles using catalytic chemical vapor deposition (CCVD). By modulating short pulses of acetylene into a methane-based CCVD growth process, the density of SWCNTs is dramatically increased by up to three orders of magnitude without increasing the catalyst density and degrading the nanotube quality. In the framework of a vapor-liquid-solid model, we attribute the enhanced growth to the high dissociation rate of acetylene at high temperatures at the nucleation stage, which can be effective in both supersaturating the larger catalyst nanoparticles and overcoming the nanotube nucleation energy barrier of the smaller catalyst nanoparticles. These results are highly relevant to numerous applications of random SWCNT networks in next-generation energy, sensing and biomedical devices.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c1nr10765hDOI Listing

Publication Analysis

Top Keywords

catalyst nanoparticles
12
single-walled carbon
8
carbon nanotube
8
catalyst activation
8
swcnt networks
8
catalyst
6
3-orders-of-magnitude density
4
density control
4
control single-walled
4
nanotube
4

Similar Publications

Doping strategies have been recognized as effective approaches for developing cost-effective and durable catalysts with enhanced reactivity and selectivity in the electrochemical synthesis of value-added compounds directly from CO. However, the reaction mechanism and the specific roles of heteroatom doping, such as N doping, in advancing the CO reduction reaction are still controversial due to the lack of precise control of catalyst surface microenvironments. In this study, we investigated the effects of N doping on the performances for electrochemically converting CO to CO over Ni@NCNT/graphene hybrid structured catalysts (Ni@NCNT/Gr).

View Article and Find Full Text PDF

This paper explores the process of forming arrays of vertically oriented carbon nanotubes (CNTs) localized on metal electrodes using thin porous anodic alumina (PAA) on a solid substrate. On a silicon substrate, a titanium film served as the electrode layer, and an aluminium film served as the base layer in the initial film structure. A PAA template was formed from the Al film using two-step electrochemical anodizing.

View Article and Find Full Text PDF

Hollandite-type α-MnO exhibits exceptional promise in current industrial applications and in advancing next-generation green energy technologies, such as multivalent (Mg, Ca, and Zn) ion battery cathodes and aerobic oxidation catalysts. Considering the slow diffusion of multivalent cations within α-MnO tunnels and the catalytic activity at edge surfaces, ultrasmall α-MnO particles with a lower aspect ratio are expected to unlock the full potential. In this study, ultrasmall α-MnO (<10 nm) with a low aspect ratio (c/a ≈ 2) is synthesized using a newly developed alcohol solution process.

View Article and Find Full Text PDF

Alkali metal doping is a new and promising approach to enhance the photo/electrocatalytic activity of NiS-based catalyst systems. This work investigates the impact of sodium on the structural, electronic, and catalytic properties of NiS. Comprehensive characterization techniques demonstrate that Na-doping causes significant changes in the NiS lattice and surface chemistry translating into a larger bandgap than NiS.

View Article and Find Full Text PDF

Gold nanoparticles (AuNPs) have been widely used as efficient and environmentally friendly catalysts due to their high specific surface area and abundant active sites. However, AuNP-based catalytic systems face several challenges, including the instability of AuNPs during the reaction, the difficulty in monitoring the process, which can easily result in insufficient reaction due to short reaction time or waste of resources due to long reaction time, as well as issues of catalyst recovery. This study proposes a novel catalyst integrating various functions, such as high stability, the capacity for real-time monitoring of the catalytic process, and rapid recycling.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!