There has been much information learned in recent years about voltage gated sodium channel (Na(V)) subtypes in somatosensory pain signalling, but much less is known about the role of specific sodium channel subtypes in the vagal sensory system. In this study, we developed a technique using adeno-associated viruses (AAVs) to directly introduce shRNA against Na(V)1.7 subtype gene into the vagal sensory ganglia of guinea pigs in vivo. Na(V)1.7 gene expression in nodose ganglia was effectively and selectively reduced without influencing the expression of other sodium channel subtype genes including Na(V)1.1, 1.2, 1.3 1.6, 1.8, or 1.9. Using a whole cell patch-clamp technique, this effect on Na(V)1.7 gene expression coincided with a reduction in tetrodotoxin-sensitive sodium current, a requirement for much larger depolarizing stimulus to initiate action potentials, and reduction in repetitive action potential discharge. Extracellular recordings in the isolated vagus nerve revealed that the conduction of action potentials in sensory A- and C-fibres in many neurons was effectively abolished after Na(V)1.7 shRNA introduction. Moreover, bilateral Na(V)1.7 shRNA injected animals survived for several months and the vagal reflex behaviour, exemplified by citric acid-induced coughing, was significantly suppressed. These data indicate that selectively silencing Na(V)1.7 ion channel expression leads to a substantial decrease in neural excitability and conduction block in vagal afferent nerves.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3249041 | PMC |
http://dx.doi.org/10.1113/jphysiol.2011.215384 | DOI Listing |
Dev Biol
January 2025
Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA. Electronic address:
While the enteric nervous system (ENS) of jawed vertebrates is largely derived from the vagal neural crest, lamprey are jawless vertebrates that lack the vagal neural crest, yet possess enteric neurons derived from late-migrating Schwann cell precursors. To illuminate homologies between the ENS of jawed and jawless vertebrates, here we examine the diversity and distribution of neuronal subtypes within the intestine of the sea lamprey during late embryonic and ammocete stages. In addition to previously described 5-HT-immunoreactive serotonergic neurons, we identified NOS and VIP neurons, consistent with motor neuron identity.
View Article and Find Full Text PDFNat Rev Cardiol
January 2025
Institute for Pathophysiology, West German Heart and Vascular Center, University of Duisburg-Essen, Essen, Germany.
J Physiol
December 2024
Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA, USA.
Loss of cardiac physiological function following myocardial infarction (MI) is accompanied by neural adaptations in the baroreflex that are compensatory in the short term, but then become associated with long-term disease progression. One marker of these adaptations is decreased baroreflex sensitivity, a strong predictor of post-MI mortality. The relative contributions of cardiac remodelling and neural adaptation in the sensory, central brainstem and peripheral ganglionic loci to baroreflex sensitivity changes remain underexplored.
View Article and Find Full Text PDFJ Electrocardiol
November 2024
Carver College of Medicine, University of Iowa Hospitals and Clinics, Iowa City, IA, United States of America.
Neurocardiology is a broad interdisciplinary specialty investigating how the cardiovascular and nervous systems interact. In this brief introductory review, we describe several key aspects of this interaction with specific attention to cardiovascular effects. The review introduces basic anatomy and discusses physiological mechanisms and effects that play crucial roles in the interaction of the cardiovascular and nervous systems, namely: the cardiac neuraxis, the taxonomy of the nervous system, integration of sensory input in the brainstem, influences of the autonomic nervous system (ANS) on heart and vasculature, the neural pathways and functioning of the arterial baroreflex, receptors and ANS effects in the walls of blood vessels, receptors and ANS effects in excitable cells in the heart, ANS effects on heart rate and sympathovagal balance, endo-epicardial inhomogeneity, ANS effects with a balanced vagal and sympathetic stimulation, sympathovagal interaction, arterial baroreflex, baroreflex sensitivity and heart rate variability, arrhythmias and the arterial baroreflex, the cardiopulmonary baroreflex, the exercise pressor reflex, exercise-recovery hysteresis, mental stress, cardiac-cardiac reflexes, the cardiac sympathetic afferent reflex (CSAR), and neuromodulation.
View Article and Find Full Text PDFCell Rep
December 2024
Department of Physiology and Pharmacology, Karolinska Institutet, Solna, Sweden; Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada. Electronic address:
Nociceptor neurons play a crucial role in maintaining the body's homeostasis by detecting and responding to potential environmental dangers. However, this function can be detrimental during allergic reactions, as vagal nociceptors contribute to immune cell infiltration, bronchial hypersensitivity, and mucus imbalance in addition to causing pain and coughing. Despite this, the specific mechanisms by which nociceptors acquire pro-inflammatory characteristics during allergic reactions are not yet fully understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!